Cho \(P=\frac{x+1}{2x}\)
Tìm giá trị nguyên của x để biểu thức Q=2P nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
a) \(P\)\(=\sqrt{x}-2+3-3\sqrt{x}=1-2\sqrt{x}\)
b) \(Q=\frac{2\left(1-2\sqrt{x}\right)}{1-1+2\sqrt{x}}=\frac{1-2\sqrt{x}}{\sqrt{x}}=\frac{1}{\sqrt{x}}-2\)
vậy x=1 thỏa mãn đề bài.
Trả lời :.............................
x=1...........................
Hk tốt..............................
+ Thông thường biểu thức A sẽ có dạng trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0
+ Cách làm:
- Bước 1: Tách về dạng trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên
- Bước 2: Để A nhận giá trị nguyên thì nguyên hay nghĩa là g(x) thuộc tập ước của k
- Bước 3: Lập bảng để tính các giá trị của x
- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán
2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng . Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:
\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)
\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)
b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)
\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)
+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)
+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)
Vậy x nguyên bằng 0 thì A nguyên
c) \(\left|A\right|=A\Leftrightarrow A\ge0\)
\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)
Vậy \(x>\frac{1}{2}\)thì |A| = A
a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)
Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1
Mà x nguyên => 2x-1 nguyên
=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
2x-1 | -2 | -1 | 1 | 2 |
2x | -1 | 0 | 2 | 3 |
x | -1/2 | 0 | 1 | 3/2 |
Đối chiếu điều kiện
=> x=0
\(P=\frac{x+1}{2x}\Rightarrow Q=2P=\frac{2x+2}{2x}=1+\frac{2}{2x}\)
\(\Rightarrow Q=2P\in Z\Leftrightarrow1+\frac{2}{2x}\in Z\Leftrightarrow\frac{2}{2x}\in Z\)
\(\Leftrightarrow2x\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow x\in\left\{-\frac{1}{2};\frac{1}{2};-1;1\right\}\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;1\right\}\)
...