cmr x^3-y^3=(x-y)^3+3xy(x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) sai đề em ơi
Đề đúng là: x2 + y2 = (x + y)2 - 2xy
Giải theo đúng đề nè:
a) x2 + y2
= x2 + y2 + 2xy - 2xy
= (x + y)2 - 2xy
b) Đề cũng sai. Đề đúng phải là: x3 + y3 = (x + y)3 - 3xy(x + y)
Giải đề đúng là:
x3 + y3 = x3 + y3 + 3x2y + 3xy2 - 3x2y - 3xy2
= (x + y)3 - 3xy(x + y)
c) x3 - y3 = x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2
= (x - y)3 + 3xy(x - y)
1)Xài hằng đẳng thức.
2)Ta có:
(x+y)(x+y)(x+y)=(x+y)(x^2+xy+xy+y^2)
=(x+y)(x^2+2xy+y^2)
=x^3+2x^2y+xy^2+yx^2+2xy^2+y^3
=x^3+3x^2y+3xy^2+y^3
(x+y)(x+y)(x+y)=(x+y)3=x3+3x2y+3xy2+y3 (hằng đẳng thức đáng nhớ lớp 8)
=>đpcm
\(\left(x+y\right)\left(x+y\right)\left(x+y\right)=x^3+3x^2y+3xy^2+y^3\)
Bạn nhân vào là ra thôi mà
Biến đổi vế trái, ta có:
VT= x3+y3+z3
= x3+3x2y+3xy2+y3-3x2y-3xy2+z3
=(x+y)3-3xy(x+y)+z3 = VP
Vậy đẳng thức dược chứng minh
Ta có : Thêm \(-3xyz\) vào 2 vế , ta có :
\(VT=x^3+y^3+z^3-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\left(1\right)\)
\(VP=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
\(\Rightarrowđpcm\)
Cho sủa đề nha : \(x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
Ta có:
\(\left(x+y\right)^3+3xy\left(x+y\right)=x^3+y^3+6xy\left(x+y\right)=2016+6xy\left(x+y\right)\)
dễ thấy xy(x+y) chia hết cho 3 => 6xy(x+y) chia hết cho 18
MÀ 2016 chia hết cho 18
Vậy...
Ta có : x + y = -1
=> ( x + y )2 = 1
=> - ( x + y )2 = -1
=> - ( x2 + 2xy + y2 ) = -1
=> -x2 - 2xy - y2 = -1
=> - x2 + xy - y2 - 3xy = -1
=> -( x2 - xy + y2 ) - 3xy = -1
=> -1 . ( x2 - xy + y2 ) - 3xy = -1
Thay -1 = x + y vào biểu thức ta có :
( x + y ) . ( x2 - xy + y2 ) - 3xy = -1
=> x3 + y3 - 3xy = -1 ( ĐPCM )
\(VP=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+3xy\left(x-y\right)\)
\(=x^3-3xy\left(x-y\right)-y^3+3xy\left(x-y\right)\)
\(=x^3-y^3=VT\left(đpcm\right)\)
Biến đổi VP ta có:
\(\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=x^3-y^3-3xy\left(x-y\right)+3xy\left(x-y\right)\)
\(=x^3-y^3\)
Vậy ....