K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Ta có:

\(c+d=4\)

\(\Rightarrow\left(c+d\right)^2=4^2\)

\(\Rightarrow c^2+2cd+d^2=16\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4a^2+c^2\ge2.2a.c=4ac\)

\(b^2+d^2\ge2bd\)

\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)

\(\Rightarrow18\ge4ac+2bd+2cd\left(theo\left(1\right)\right)\)

\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)

\(\Rightarrow9\ge2ac+bd+cd\)

\(\Rightarrow2ac+bd+cd\le9\)

\(\Rightarrow A_{max}=9\Leftrightarrow2a=c;b=d\)

Để max đúng 

4 tháng 10 2020

BẠN LÀM SAI RỒI phải tìm rõ cả a,b,c,d 

Nếu ko lm sao có dấu bằng xảy ra

vì hệ pt 4a2+b2=2 c=d

              c+d=4; 2a=b

vô nghiệm

29 tháng 6 2021

12632t54s jsd

7 tháng 9 2023

Trước tiên ta đi chứng minh BĐT phụ là:

Với a,b>0�,�>0 thì a2+b4ab(a2+b2)�2+�4≥��(�2+�2)

Cách CM:

BĐT trên tương đương với: (ab)2(a2+ab+b2)0(�−�)2(�2+��+�2)≥0 (luôn đúng)

Quay trở về bài toán chính: Áp dụng BĐT phụ trên :

ca4+b4+ccab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

Ta2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)

Dấu bằng xảy ra khi a=b=c=1

7 tháng 9 2023

loading...

Nó bị mất cái dấu gạch ngang chỗ phân số nha b

16 tháng 2 2018

Chọn đáp án D

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.