6/4*7 + 6/7*10 + 6/10*13 +... + 6/97*100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Số số hạng là \(\left(101-1\right)\div1+1=101\) số hạng
Tổng là \(\left(101+1\right)\times101\div2=5151\)
b)
Số số hạng là \(\left(100-7\right)\div3+1=32\) số hạng
Tổng là \(\left(100+7\right)\times32\div2=1712\)
\(1+2+3+4+5+...+101\)
\(=(101+1)+(100+2)+(99+3)+...\)
\(=(101+1)*\dfrac{(101-1):1+1}{2}\)
\(=102*50.5=5151\)
\(7+10+13+16+19+...+100\)
\(=(100+7)+(97+10)+(94+13)+...\)
\(=(100+7)*\dfrac{(100-7):3+1}{2}\)
\(=107*16=1712\)
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200
C= \(\frac{49}{200}\)
D= \(\frac{33}{100}\)
Chúc bạn Hk tốt!!!!
C =1/2*4+1/4*6+1/6*8+...+1/98*100
2xC=2/2*4+2/4*6+2/6*8+...+2/98*100
2xC=1/2-1/4+1/4-1/6+1/6-1/8+...+1/98-1/100
2xC=1/2-1/100
2xC=49/100
C=49/100:2
C=49/200
Ý B làm tương tự nhưng nhưng cả 2 vế với 3
nha. ^_^ ^_^ ^_^
b, B=10+(-11)+...+(-99)+100
B = (10+(-11))+(12+(-13))+...+(98+(-99))+100
B = (-1)+(-1)+....+(-1)+100 ( có 45 số -1)
B= (-1).45 +100
B=-45 +100
B = 55
c, (1+2+(-3)+(-4))+(5+6+(-7)+(-8)) + ....+(97+98+(-99)+(-100)
= (-4)+(-4)+....+(-4) (có 25 nhóm)
= (-4).25 = 100
d= số số hạng trong D là : (200-2)/2+1 = 100
D= ((-200)+(-2)).100/2 = -10100
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
\(\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+...+\frac{6}{97\cdot100}\)
\(=2\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{97\cdot100}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(=2\cdot\frac{24}{100}=\frac{24}{50}=\frac{12}{25}\)
Đặt \(A=\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+...+\frac{6}{97\cdot100}\)
\(A=\)\(2\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=2\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(A=2\left(\frac{25}{100}-\frac{1}{100}\right)\)
\(A=2\cdot\frac{24}{100}=2\cdot\frac{6}{25}=\frac{12}{25}\)