K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

A B C M I H K

a, có I là trung điểm của BC (Gt)

IM ⊥ BC (Gt)

=> IM là trung trực của BC (đn)

=> MB = MC (Định lí)

b, M thuộc tia phân giác của ^BAC (gt)

MH ⊥ AB (gt) và MK ⊥ AC (gt)

=> MH = MK (tính chất)

xét ΔMHB và ΔMKC có: MB = MC (Câu a)

^MHB = ^MKC = 90

=> ΔMHB = ΔMKC (ch-cgv)

=> MH = MK (Định nghĩa)

24 tháng 10 2017

mk ko bt 123

25 tháng 2 2017

bạn ơi cho mình hình đc ko?

3 tháng 1 2018

a) Xét tứ giác AMIN, ta có:

\(\widehat{A}\) = 90o (△ABC vuông tại A)

\(\widehat{M}\) = 90o (IM ⊥ AB tại M)

\(\widehat{N}\) = 90o (IN ⊥ AC tại N)

Vậy tứ giác AMIN là hình chữ nhật.

b) *Xét △AIC, ta có:

IA = IC (AI là đường trung tuyến của △vABC)

⇒ △AIC cân tại A

Mà IN ⊥ AC (gt)

Nên IN là đường cao của △AIC

⇒ Đồng thời là đường trung tuyến

⇒ AN = NC

*Xét tứ giác ADCI, ta có:

IN = ND (gt)

AN = NC (cmt)

⇒ ADCI là hình bình hành

Mà AI = IC (cmt)

Vậy ADCI là hình thoi.

c) Gọi O là giao điểm BN và AI

Vì ADCI là hthoi (cmt)

⇒ AI // CD

\(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)

*Cm: △INP = △DNK (g.c.g)

⇒ IP = DK

*Vì ADCI là hthoi (cmt)

⇒ AI = DC

*Ta có:

AN = NC (cmt)

⇒ BN là đường trung tuyến

*Xét △ABC, ta có:

AI, BN là đường trung tuyến (gt,cmt)

Mà AI, BN cắt nhau tại B (theo cách vẽ)

Nên P là trọng tâm của △ABC

\(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)

Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

c: Xét ΔABI và ΔACI có

AB=AC
\(\widehat{BAI}=\widehat{CAI}\)

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)

hay CI\(\perp\)CA