cho tam giác abc cân tại a . Đương phân giác bm (m E ac)và cn ( n E ab ) cắt nhau tại o biết độ dài ab=15cm , am=9cm
a>tính độ dài cạnh bc ?
b> cmr : mn//bc
c> tính độ dài mn ?
nhanh giúp chữ E là thuộc nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN=9cm và AB=AC=15cm
Xét ΔABC có BM là phân giác
nên AM/MC=AB/BC
=>15/BC=9/6=3/2
=>BC=10cm
b: Xét ΔABC có AM/AC=AN/AB
nên MN//BC
c: Xét ΔABC có MN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6(cm)
a: AC=AB=15cm
MC=15-9=6cm
Xét ΔBACcó BM là phân giác
nên AM/AB=MC/BC
=>6/BC=9/15=3/5
=>BC=10cm
b: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
=>ΔABM=ΔACN
=>AM=AN
Xét ΔABC có AN/AB=AM/AC
nên MN//BC
c: Xét ΔABC cóMN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6cm
a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>MA=MN
c: Xét ΔBDC có
BE là đừog cao, là phân giác
nên ΔBDC cân tại B
=>BD=BC
BA+AD=BD
BN+NC=BC
mà BD=BC; BA=BN
nên AD=NC
a Tam giác ABC cân tại A => AB=AC=15
Tia p/g BM
=> Theo tính chất đương p/g ta có
AMAB=MCBCAMAB=MCBC
MC=AC-AM
=>AMAB=AC−AMBCAMAB=AC−AMBC
AM15=15−AM10AM15=15−AM10
=> AM= 9
=> MC=AC-AM=15-9=6
BM vuông góc BN
=> BM là tia p/g góc ngoài tại B
=>NCNA=BCBANCNA=BCBA
=> NC.BA=BC.NA
NC.BA-BC.NA=0
NC.BA-BC(AC+CN)= 0
=> NC.15-10(15+CN)=0
=> NC=30
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm
Vì tam giác ABC cân tại A suy ra AB=AC= 15 cm
Mà AM+MC=AC nên 9 + MC= 15
suy ra MC=6cm
Vì BM là phân giác của góc B nên
\(\frac{AM}{MC}=\frac{AB}{BC}\Leftrightarrow\frac{9}{6}=\frac{15}{BC}\Rightarrow BC=10cm\)
b) Vì \(\widehat{ABM}=\widehat{MBC}=\frac{\widehat{ABC}}{2}\);
\(\widehat{ACN}=\widehat{NCB}=\frac{\widehat{ACB}}{2}\)
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
nên \(\widehat{ABM}=\widehat{MBC}=\)\(\widehat{ACN}=\widehat{NCB}\)
Xét tam giác ABM và tam giác ACN
có AB=AC(GT); góc A chung; \(\widehat{ABM}=\widehat{ACN}\)
suy ra tam giác ABM = tam giác ACN ( g.c.g)
suy ra AN=AM suy ra tam giác AMN cân tại A suy ra \(\widehat{ANM}=\widehat{AMN}\)
Xét tam giác AMN có \(\widehat{ANM}+\widehat{AMN}+\widehat{A}=180^0\Rightarrow\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\)(1)
Vì tam giác ABC cân tại A suy ra \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (!) và (2) suy ra \(\widehat{ANM}\)= \(\widehat{ABC}\)
Mà góc ANM đồng vị với góc ABC
suy ra MN//BC
c) Vì MN//BC ta có
\(\frac{MN}{BC}=\frac{AM}{AC}\Rightarrow\frac{MN}{10}=\frac{9}{15}\Rightarrow MN=6cm\)
CHÚC EM HỌC TỐT