Tính
a,A=1+2+2^2+2^3+...=2^2020
b,M=8^10+4^10/8^4+4^11
Giúp mình với!HELP ME😭😭😭
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
a: \(\Leftrightarrow\left(4x+12\right)\left(3x-2\right)-\left(3x+3\right)\left(4x-1\right)=-27\)
\(\Leftrightarrow12x^2-8x+36x-24-\left(12x^2-3x+12x-3\right)=-27\)
\(\Leftrightarrow12x^2+28x-24-12x^2-9x+3=-27\)
\(\Leftrightarrow19x-21=-27\)
=>19x=-6
hay x=-6/19
b: \(\left(x+1\right)\left(3x^2-x+1\right)+x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x+3x^2-x+1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2+1=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2=\dfrac{3}{2}\)
\(\Leftrightarrow x^2=\dfrac{3}{12}=\dfrac{1}{4}\)
=>x=1/2 hoặc x=-1/2
c: \(\Leftrightarrow2\left(x^2-4\right)-4\left(x^2-x-2\right)+\left(5x+8\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2-8-4x^2+4x+8+5x^2+10x+8x+16=0\)
\(\Leftrightarrow3x^2+22x+16=0\)
\(\text{Δ}=22^2-4\cdot3\cdot16=292>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-22-2\sqrt{73}}{6}=\dfrac{-11-\sqrt{73}}{3}\\x_2=\dfrac{-11+\sqrt{73}}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow20x^2-16x-1=10x^2-2x+5x-1\)
\(\Leftrightarrow10x^2-19x=0\)
=>x(10x-19)=0
=>x=0 hoặc x=19/10
a) \(74.42+74.58-400=74.\left(42+58\right)-400\)
\(=74.100-400\)
\(=7400-400\)
\(=7000\)
b) \(75-\left(3.5^2-4.2^3\right)=75-\left(3.25-4.8\right)\)
\(=75-\left(75-32\right)\)
\(=75-75+32\)
\(=32\)
c) \(x-15=-135\)
\(x=-135+15\)
\(x=-120\)
a)
5.(12-x)-20=30
⇒60-5x-20=30
⇒-5x=30+20-60
⇒-5x=-10
⇒x=2
b)(17x - 25 ) : 8 + 65 = 92
(17x - 25 ) : 8 + 65 = 81
17x - 25 = 16 x 8 = 128
17x = 128+25=153
x= 153:17 =9
c)
x=23
Giải thích các bước giải:
3x – 10 = 2x + 13
3x-2x=13+10
x=23
d)4(2x+7)-3(3x-2)=24
4.2x+4.7-3.3x+3.2=24
8x+28-9x+6=24
8x-9x=24-28-6=-10
=>(-1)x=-10
x=-10:(-1)
x=10
a. \(5\cdot\left(12-x\right)-20=30\Leftrightarrow5\left(12-x\right)=50\)
\(\Leftrightarrow12-x=50:5=10\)
\(\Leftrightarrow x=12-10=2\)
b. \(\left(17x-25\right):8+65=9^2\)
\(\Leftrightarrow\left(17x-25\right):8=81-65=16\)
\(\Leftrightarrow17x-25=16:8=2\)
\(\Leftrightarrow17x=2+25=27\Leftrightarrow x=\frac{27}{17}\)
c. \(3x-10=2x+13\)
\(\Leftrightarrow3x-2x=10+13\)
\(\Leftrightarrow x=23\)
d. \(4\cdot\left(2x+7\right)-3\cdot\left(3x-2\right)=24\)
\(\Leftrightarrow8x+28-9x+6=24\)
\(\Leftrightarrow34-x=24\Leftrightarrow x=10\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\cdot\frac{3}{35}=\frac{21}{35}\)
\(A=\frac{7}{10\cdot11}+\frac{7}{11\cdot12}+\frac{7}{12\cdot13}+...+\frac{7}{69\cdot70}\)
\(A=7\left(\frac{1}{10\cdot11}+\frac{1}{11\cdot12}+\frac{1}{12\cdot13}+...+\frac{1}{69\cdot70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7\cdot\frac{3}{35}=\frac{3}{5}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B=\frac{1}{2}\left(\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(C=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(C=\frac{4}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{2010}\right)=2\cdot\frac{502}{1005}=\frac{1004}{1005}\)
1 + 2 + 3 + ... + 199 + 200
Ta có : 1 + 2 + 3 + ... + 199 + 200 ( có 200 số )
= (200 + 1) x 200 : 2 = 20100
3 + 5 + 7 + ... + 97 + 99
Ta có : 3 + 5 + 7 + ... + 97 + 99 (có 49 số )
= (99 + 3) . 49 : 2 = 2499
\(=\left(2\sqrt{3}-2\sqrt{3}+5\sqrt{2}-\frac{3}{4\sqrt{8}}\right)2\sqrt{6}\)
=\(5\sqrt{2}.2\sqrt{6}-\frac{3}{8\sqrt{2}}.2\sqrt{2}.\sqrt{3}\)
=\(20\sqrt{3}-\frac{3\sqrt{3}}{4}=\sqrt[]{3}.\left(20-\frac{3}{4}\right)=\frac{\sqrt{3}.77}{4}\)
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)