Cho tam giác vuông ABC (góc A = 90, AB > AC) và một điểm M nằm trên đoạn AC . Gọi N và D lần lượt là giao điểm thứ hai của BC và MB với đường tròn đường kính MC. Gọi S là giao điểm thứ hai giữa AD với đường tròn đường kính MC. T là giao của MN và AB. Chứng minh CM là phân giác của góc BCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần a điểm "S" ở đâu ra đấy
b,xét tứ giác ADCB có:
góc BAC =900, góc BDC=900
=>góc BAC= góc BDC
=>tứ giác ADCB nt
=>góc TAD = góc TCB
xét 2 tam giác TAD và TCB có :
góc ATD chung; góc TAD = góc TCB
=>2 tam giác này đồng dạng vs nhau
=>TA/TC=TD/TB
=>TA/TD=TC/TB(t/c tỉ lệ thức)
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB
a: Xét (O) có
AM là tiếp tuyến
AN là tiếp tuyến
Do đó: AM=AN
hay A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(3)
b: Xét (O) có
ΔMNC nội tiếp
MC là đường kính
Do đó: ΔMNC vuông tại N
=>MN⊥NC(4)
Từ (3) và (4) suy ra OA//CN
c: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
Do đó:ΔMDC vuông tại D
Xét ΔMAC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(5\right)\)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(6\right)\)
Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)
a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)
=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).
b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA
Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.
Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.
Tương tự ta chứng minh được: DM là phân giác ^ADC
Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD
Hay AE là phân giác ^CAD => ^CAE = ^DAE.
Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE
=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)
=> OE vuông góc CD (đpcm).
c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)
Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK
=> ^MCK = 1/2(^ADC + ^ACD) (2)
Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA
=> M nằm trên trung trực của AK
Lập luận tương tự: NA=NK => N nằm trên trung trực của AK
=> MN là đường trung trực của AK . Lại có H thuộc MN
=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.
Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)
\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD
=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).
d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)
=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600
Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600
Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)