K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

tại sao bạn => được \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)

5 tháng 11 2016

\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)

\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Tới đây bạn thay vào nhé :)

7 tháng 11 2018

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

12 tháng 11 2018

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

17 tháng 1 2019

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

18 tháng 1 2019

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

17 tháng 8 2017

Sửa lại đề : tính \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)=\left(x-z\right)\left(x-y\right)\)

CM tương tự ta cx có : \(\hept{\begin{cases}y^2+2xz=\left(y-x\right)\left(y-z\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{cases}}\)

\(\Rightarrow A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-y-z+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{yz\left(y-z\right)+xz\left(z-y\right)-xz\left(x-y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(yz-xz\right)+\left(x-y\right)\left(xy-xz\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(y-x\right)z+\left(x-y\right)\left(y-z\right)x}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 sô dương ta có: \(x^2+yz\ge2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx};z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được:

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)