cho góc xOy nhọn và tia phân giác của góc xOy. Trên tia Ox lấy A , Oy lấy B sao cho OA=OB. Trên tia Oz lấy điểm M tùy ý
cM
a)tam giác BOM=tam giác AOM
b)cm tam AB vuông Góc với OM
CM OM là đường trung trực của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta AOM\)và \(\Delta BOM\)có
\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung
=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)
=> AM = BM (hai cạnh tương ứng )
=> M là trung điểm của AB
b) vì AO = BO
=> \(\Delta ABO\)là tam giác cân
vì OM là phân giác của AB
=> OM vừa là đường cao của tam giác ABC
=> \(OM\perp AB\left(đpcm\right)\)
a: Xét ΔAOM và ΔBOM có
OA=OB
OM chung
MA=MB
Do đó:ΔAOM=ΔBOM
b: Ta có: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM\(\perp\)AB
mà d\(\perp\)OM
nên d//AB
a, Xét tam giác AOB và tg BOM có:
AO=OB (gt)
AM=MB ( M là trung điểm của AB )
Chung cạnh OM
=> tg AOB = tg BOM ( c.c.c )
b, Vì tg AOB = tg BOM ( câu a )
=> góc AMO = góc BMO ( 2 góc tương ứng )
Mà góc AMO + góc BMO = 180o ( 2 góc kề bù )
=> Góc AMO=góc BMO=90o
=> OM vuông góc với AB
Mà Od vuông góc với OM
=> Od song song với AB.
THẾ LÀ XONG RỒI ĐẤY ! ^^ BẠN CẦN VẼ HÌNH KO ?
a: Xét ΔAOM và ΔBOM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔAOM=ΔBOM
b: ΔOAB cân tại O
mà OI là phân giác
nen OI vuông góc AB
=>ΔMIA vuông tại I
c: Xét ΔMIA vuông tại I và ΔMIBvuông tại I có
MA=MB
MI chung
=>ΔMIA=ΔMIB