Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
a) ( 3x + 2 )( x - 1 ) - ( x + 2 )( 3x + 1 ) = 7
<=> 3x2 - x - 2 - ( 3x2 + 7x + 2 ) = 7
<=> 3x2 - x - 2 - 3x2 - 7x - 2 = 7
<=> -8x - 4 = 7
<=> -8x = 11
<=> x = -11/8
b) ( 6x + 5 )( 2x + 3 ) - ( 4x + 3 )( 3x - 2 ) = 8
<=> 12x2 + 28x + 15 - ( 12x2 + x - 6 ) = 8
<=> 12x2 + 28x + 15 - 12x2 - x + 6 = 8
<=> 27x + 21 = 8
<=> 27x = -13
<=> x = -13/27
c) 2x( x + 3 ) - ( x + 1 )( 2x + 1 ) - 5 = 9
<=> 2x2 + 6x - ( 2x2 + 3x + 1 ) - 5 = 9
<=> 2x2 + 6x - 2x2 - 3x - 1 - 5 = 9
<=> 3x - 6 = 9
<=> 3x = 15
<=> x = 5
d) ( 5x + 3 )( 4x - 7 ) - ( 10x + 9 )( 2x - 3 ) = 10
<=> 20x2 - 23x - 21 - ( 20x2 - 12x - 27 ) = 10
<=> 20x2 - 23x - 21 - 20x2 + 12x + 27 = 10
<=> -11x + 6 = 10
<=> -11x = 4
<=> x = -4/11
a, \(\left(3x+2\right)\left(x-1\right)-\left(x+2\right)\left(3x+1\right)=7\Leftrightarrow-8x-4=7\Leftrightarrow x=-\frac{11}{8}\)
b, \(\left(6x+5\right)\left(2x+3\right)-\left(4x+3\right)\left(3x-2\right)=8\Leftrightarrow27x+21=8\Leftrightarrow x=-\frac{13}{27}\)
c, \(2x\left(x+3\right)-\left(x+1\right)\left(2x+1\right)-5=9\Leftrightarrow3x-6=9\Leftrightarrow x=5\)
d, \(\left(5x+3\right)\left(4x-7\right)-\left(10x+9\right)\left(2x-3\right)=10\Leftrightarrow-11x+6=10\Leftrightarrow x=-\frac{4}{11}\)
a: \(=\dfrac{5}{2x^2y}+\dfrac{2}{3xy}-\dfrac{y}{x^3}\)
\(=\dfrac{5\cdot3\cdot x}{6x^3y}+\dfrac{2\cdot2\cdot x^2}{6x^3y}-\dfrac{6y^2}{6x^3y}\)
\(=\dfrac{15x+4x^2-6y^2}{6x^3y}\)
b: \(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)
c: \(=\dfrac{x^4-1-x^4+3x^2}{x^2-1}=\dfrac{3x^2-1}{x^2-1}\)
( 2x + 1 )3 - ( 3x + 2 )2 = ( 2x - 5 )( 4x2 + 10x + 25 ) + 6x( 2x + 1 ) - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - ( 9x2 + 12x + 4 ) = 8x3 - 125 + 12x2 + 6x - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - 9x2 - 12x - 4 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 - 8x3 - 3x2 - 6x + 125 = 0
⇔ -12x + 122 = 0
⇔ -12x = -122
⇔ x = 61/6
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
Ta xét:
\(\left|3x+2\right|\ge0\)
\(\left|2x+5\right|\ge0\)
\(\left|x+1\right|\ge0\)
\(\Rightarrow\left|3x+2\right|+\left|2x+5\right|+\left|x+1\right|\ge0\)
\(\Rightarrow10x\ge0\)
\(\Rightarrow x\ge0\)
Do vậy: \(3x+2+2x+5+x+1=10x\)
\(\Rightarrow x\left(3+2+1\right)+\left(2+5+1\right)=10x\)
\(\Rightarrow6x+8=10x\)
\(\Rightarrow10x-6x=8\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)