cho tam giác ABC vuông tại A có AB=10cm, AC=24cm, đường cao AH
a, Tính độ dài các đoạn thẳng BC, AH,BH
b, Đường thăng d song song với BC cắt các cạnh AB và AC lần lượt tại 2 điểm M và N. Gọi O là giao điểm của MC và NB. Tia Ny song song với AB cắt MC tại F, tia Mx song song với AC cắt BN tại E. Chứng minh rằng ON^2=OB.OE
làm đc bao nhiêu cũng đc giúp mình với
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)
b) Xét tam giác OMN có BC//MN (gt)
\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)
Xét tam giác OME có ME// NC ( vì ME//AC )
\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)
\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)
\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)