bài 1 tìm số tự nhiên nhỏ nhất, bt rằng khi chia n cho 3;5;7 đc số dư lần lượt là 2;4;6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
7 chia het cho (2x+1)
ma 7 chia het cho 1;7
=>2x+1=1=>x=0
2x+1=7=>x=3
ket luan x = 0;3
từ từ thôi cái này tốn có 4 câu hỏi thôi mà cho vào 1 câu làm gì
Bài 3:
Ta có: \(10^{1995}+8=...0+8=...8\)
\(10^{1995}+8=1+0...0+8=9\)(1995 c/s 0)
\(\Rightarrow10^{1995}+8⋮9\)
Vậy \(\frac{10^{1995}+8}{9}\)là số tự nhiên
3. \(\frac{10^{1995}+8}{9}=\frac{100...00+8}{9}\) (số 100...00 có 1995 chữ số 0)
\(=\frac{100...08}{9}\)(số 100...08 có 1994 chữ số 0)
Mà số 100...08 có 1 + 0 + 0 + ... + 0 + 8 = 9\(⋮\)9
\(\Rightarrow100...08⋮9\)
\(\Rightarrow\frac{100...08}{9}⋮9\)
\(\Rightarrow\frac{100...08}{9}\)có kết quả là 1 số tự nhiên.
Vậy\(\frac{10^{1995}+8}{9}\)là 1 số tự nhiên.
=> (n+1) \(\in\)BCNN(3,5,7)
3= 3; 5=5; 7= 7
BCNN(3,5,7) = 3.5.7=105
=> n+1 = 105
n= 105-1
n= 104
Vậy...
gọi số cần tìm là x (x thuộc N)
x : 3 dư 2 => x + 1 chia hết cho 3
x : 5 dư 4 => x + 1 chia hết cho 5
x : 7 dư 6 => x + 1 chia hết cho 7
=> x + 1 thuộc BC(3; 5; 7)
có (3; 5; 7) = 1 => BCNN(3;5;7) = 3.5.7 = 105
=> BC(3; 5; 7) = B(105) = {0; 105; 210; ... }
=> x + 1 thuộc {0; 105; 210; ... }
=> x thuộc {-1; 104; 209; ...} mà x là stn nhỏ nhất
=> x = 104