2n-1 chia hết cho n-3
giúp mình với nếu có ai biết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+6 chia hết cho n-1
=.(n-1)+7 chia hết cho n-1
=> 7 chia hết cho n-1
=>n-1 =Ư(7)
=>...
b)tương tự
c)2n+7 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
=> 5 chia hết cho n+1
=>n+1 =Ư(5)
=.....
a) n \(\in\)Z
4n - 5 + 1 \(⋮\)2n
4n là số chẵn nên chia hết cho 2
- 5 là số lẽ nên chia cho 2 dư 1
Vậy 4n - 5 + 1 chia hết cho 2 với mọi giá trị của n
mà 2n cũng là số chẵn
nên 4n - 5 \(⋮\)2n - 1 với mọi giá trị n
tìm n thuộc Z
a) 4n-5 chia hết cho (2n -1)
<=> 4n-2-3 chia hết (2n-1)
<=> 2(2n-1)-3 chia hết(2n-1)
=>-3 chia hết cho (2n-1)
=> 2n-1 =(-3,-1,1,3}
2n={-2,0,2,4}
n={-1,0,1,2}
b) tương tụ
8-n ước của 4={-4,-2-1,1,2,4}
n={12,10,9,7,6,4}
hi mk muốn giúp cuậ nhưng mk đang bận
k mk đi mk làm xong mk giúp
ta có:\(\frac{2n+7}{n+1}\)=\(\frac{2\left(n+1\right)+6}{n+1}\)=\(2+\frac{6}{n+1}\)
Để 2+\(\frac{6}{n+1}\)thuộc Z
=>n+1 thuộc Ư(6)
=>n+1 thuộc {1;-1;2;-2;3;-3;6;-6}
n thuộc {0;-2;1;-3;2;-4;5;-7}
vậy n thuộc {0;-2;1;-3;2;-4;5;-7}
Ta có \(2n+7⋮n+1\Rightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Thử từng ước của 5 rồi tìm n thỏa mãn
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
2n - 1 ⋮ n - 3
=> 2n - 6 + 5 ⋮ n - 3
=> 2(n - 3) + 5 ⋮ n - 3
=> 5 ⋮ n - 3
=> n - 3 thuộc Ư(5)
=> n - 3 thuộc {-1;1;-5;5}
=> n thuộc {2;4;-2;8}
Ta có :
\(\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2\left(n-3\right)+5}{n-3}=2+\frac{5}{n-3}\)
2n-1 chia hết cho n-3
==>n-3 thuộc Ư(5)
ta có bảng:
Vậy n={2;4;-2;8}