Cho tứ giác ABCD, F thuộc AC. Kẻ EF // DC, FG // BC ( E thuộc AD, G thuộc AB) . Chứng minh rằng AE.BF=DE.AG
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NM
Nguyễn Minh Quang
Giáo viên
11 tháng 2 2021
THeo thales ta có
\(\Rightarrow\hept{\begin{cases}\frac{EF}{AB}=\frac{CE}{CA}\\\frac{EI}{CD}=\frac{AE}{AC}\end{cases}\Rightarrow}\frac{EF}{AB}+\frac{EI}{CD}=\frac{CE}{CA}+\frac{AE}{AC}=1\)VẬY ta có đpcm
HD
qua điểm E thuộc đg chéo BD của tgiac ABCD, vẽ EF//AD( F thuộc AB), EG//DC( G thuộc BC). cm: FG //AC
0
30 tháng 12 2022
Xét ΔBAD có EF//AD
nên EF/AD=BF/BA=BE/BD
Xét ΔBDC có GE//DC
nên BG/BC=BE/BD
=>BG/BC=BF/BA
=>FG//AC
\(\frac{AE}{DE}=\frac{AF}{CF}\left(1\right)\) EF//DC, \(\frac{AG}{BG}=\frac{AF}{CF}\left(2\right)\) FG//BC
(1) (2)\(\Rightarrow\frac{AE}{DE}=\frac{AG}{BG}\Rightarrow AE.BG=DE.AG\) Sai đề