Phân tích đa thức thành nhân tử
A=x3-3x2+4
B=x2+y2-x2y2-x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c: \(2x-1-x^2\)
\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)
g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)
\(=\left(5-x\right)\left(5+3x\right)\)
h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)
\(=3x\left(-x+2\right)\)
i: \(=x^2y^2-4xy+4-3\)
\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)
k: \(=y^2-\left(x-1\right)^2\)
\(=\left(y-x+1\right)\left(y+x-1\right)\)
l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)
m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)
a) \(x^2+2xy+y^2-4=\left(x+y\right)^2-2^2\)
\(=\left(x+y-2\right)\left(x+y+2\right)\)
b) \(x^2-y^2+x+y=\left(x-y\right)\left(x+y\right)+1\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+1\right)\)
c) \(y^2+x^2+2xy-16=x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2=\left(x+y+4\right)\left(x+y-4\right)\)
\(a,=3xyz\left(x+2\right)\\ b,=5\left(x+2\right)-x\left(x+2\right)=\left(x+2\right)\left(5-x\right)\\ c,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
a) 3x2yz + 6xyz = 3xyz(x+2)
b) 5(x+2) - x2 - 2x = 5(x+2) - x(x+2) = (5+x)(x+2)
c) x2 + 2xy + y2 - 22 = (x2+2xy+y2) - 22 = (x+y)2 - 22 = (x+y+2)(x+y-2)
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
\(a,=3\left(x^2-8x+16\right)=3\left(x-4\right)^2\\ b,=5\left(x^2-1\right)=5\left(x-1\right)\left(x+1\right)\\ c,=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=x^2\left(x-3\right)-4\left(x-3\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
Ta có: \(A=\left(x^3+x^2\right)-\left(4x^2-4\right)\)
\(\Leftrightarrow A=x^2.\left(x+1\right)-4.\left(x-1\right).\left(x+1\right)\)
\(\Leftrightarrow A=\left(x+1\right).\left[x^2-4.\left(x-1\right)\right]\)
\(\Leftrightarrow A=\left(x+1\right).\left(x^2-4x+4\right)\)
\(\Leftrightarrow A=\left(x+1\right).\left(x-2\right)^2\)