Tìm x, y\(\in\)N thỏa mãn \(2^{x+1}\)x \(3^y\)= 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
Với x = 0 thì \(y^2=2\) (loại)
Với \(x\ge1\) thì
\(2^x=y^2-1=\left(y-1\right)\left(y+1\right)\)
Ta thấy (y - 1) và (y + 1) là 2 số chẵn liên tiếp. Mà \(2^x\) chỉ có ước nguyên tố là 2 nên (y - 1) và (y + 1) cũng chỉ có ước nguyên tố là 2.
Từ đây ta suy ra được:
\(\hept{\begin{cases}y-1=0\\y+1=2\end{cases}}\) hoặc \(\hept{\begin{cases}y-1=2\\y+1=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=1\left(l\right)\\y=3\end{cases}}\)
\(\Rightarrow x=3\)
2^x + 1 = y^2
2^x = y^2-1
2^x =(y-1)(y+1)
=> y+1 = 2^x/(y-1)
Do y+1 nguyên => y-1 là ước của 2^x, chỉ có thể có dạng 2^n với n>=1 hoặc y-1 =1 (loại)
=> y-1 có dạng 2^n => y-1 = 2^n
=> y+1 = 2^n +2
=> 2^x = 2^n(2^n+2)= 2^(n+1).[2^(n-1) +1] (*)
Nếu n> 1 thì 2^(n-1) +1 là số lẻ trong khi 2^x chẵn => (*) Vô nghiệm
Với n=1 => y =3 => x= 3
\(2^{x+1}.3^y=2^4.3\Leftrightarrow\int^{x+1=4}_{y=1}\Leftrightarrow\int^{x=3}_{y=1}\)
2x+1.3y=48
=> 2x+1.3y=16.3
=> 2x+1.3y=24.31
=> x+1=4 và y=1
=> x=3 và y=1.