K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(ĐKXĐ:x\ne1\)

Phương trình đã có 1 nghiệm bằng 2. Ta cần giải phương trình:

\(2x+\frac{1}{x-1}=0\)

\(\Leftrightarrow\frac{2x\left(x-1\right)+1}{x-1}=0\)

\(\Leftrightarrow2x^2-2x+1=0\)

Ta có \(\Delta=2^2-4.2.1=-4< 0\)(vô nghiệm)

Vậy nghiệm duy nhất là 2

1 tháng 3 2020

Giải :

\(\left(x-2\right)\left(2x+\frac{1}{x-1}\right)=0\)

\(\Leftrightarrow x-2=0\text{ hoặc }2x+\frac{1}{x-1}=0\)

* Trường hợp 1 :

\(x-2=0\Leftrightarrow x=2\)

* Trường hợp 2 :

\(2x+\frac{1}{x-1}=0\) \(\left(\text{ĐKXĐ : }x-1\ne0\Leftrightarrow x\ne1\right)\)

\(\Leftrightarrow\frac{2x\left(x-1\right)}{x-1}+\frac{1}{x-1}=0\)

\(\text{Khử mẫu : }2x\left(x-1\right)+1=0\)

\(\Leftrightarrow2x^2-2x+1=0\)

\(\Leftrightarrow x^2-x+\frac{1}{2}=0\)

\(\Leftrightarrow x^2-x+\frac{1}{4}+\frac{1}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{-1}{4}\)

\(\Leftrightarrow x\in\varnothing(\text{vì }\left(x-\frac{1}{2}\right)^2\ge0)\)

Vậy \(S=\left\{2\right\}\).

18 tháng 2 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x+3\right)}=0\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2.2x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\frac{x^2+x}{2\left(x-3\right)\left(x+1\right)}+\frac{x^2-3x}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)

=>\(2x^2-6x=0\)

\(2x\left(x-3\right)=0\)

=>\(x=0\)

\(x=3\)

24 tháng 2 2021

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

13 tháng 7 2017

\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\ .\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
 

15 tháng 7 2017

Thank you ^^^

8 tháng 1 2018

Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)

\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)

Đến đây thao vào giải tiếp

9 tháng 1 2018

Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a\)\(\frac{x-2}{x-4}=b\)

khi đó (1) <=> \(a^2+ab-12b^2=0\)

<=> \(a^2+4ab-3ab-12b^2=0\)

<=>  \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)

<=> \(\left(a+4b\right)\left(a-3b\right)=0\)

<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)

tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?

29 tháng 2 2020

\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)

\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)

Mà \(2x^2-6x+16\ne0\) nên:

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)

Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)

28 tháng 2 2020

Bạn đặt ẩn phụ và làm nhé :
Đặt \(a=\frac{x+1}{x-2},b=\frac{x-2}{x-4}\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt có dạng :
\(a^2+ab-12b^2=0\)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)