K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

Ta có

x^2-y^2=-45

<=>y^2-x^2=45

<=>(y-x)(y+x)=45

Từ đó tìm ra x,y 

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
Vì $x,y$ tỉ lệ nghịch nên tích $xy$ không đổi

a. 

Ta có:

$x_2y_2=x_1y_1=-45$

$\Rightarrow y_2=\frac{-45}{x_2}=\frac{-45}{9}=-5$

b. 

$x_1y_1=x_2y_2$

$2y_1=4y_2$

$y_1=2y_2$. Thay vô $y_1+y_2=-12$ thì:

$2y_2+y_2=-12$

$3y_2=-12$

$y_2=-4$

$y_1=2y_2=2(-4)=-8$

c.

$x_1y_1=x_2y_2$

$12x_1=3y_2$
$4x_1=y_2$
Thay vô $x_1+2y_2=18$ thì:

$x_1+2.4x_1=18$

$9x_1=18$

$x_1=2$

$y_2=4x_1=4.2=8$

 

b: x,y tỉ lệ nghịch

=>x1*y1=x2*y2

=>x1/y2=x2/y1=k

=>x1=y2*k; x2=y1*k

x1+x2=6

=>k*(y1+y2)=6

=>\(y_1+y_2=\dfrac{6}{k}\)

c: x1/y2=x2/y1

=>x1/x2=y2/y1

=>x1/3=y2/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{3}=\dfrac{y_2}{12}=\dfrac{x_1+2y_2}{3+2\cdot12}=\dfrac{18}{27}=\dfrac{2}{3}\)

=>\(x_1=2;y_2=8\)

3 tháng 3 2018

=> x^2 = 2y^2 + 1

+, Nếu y=3 => ko tồn tại x thuộc p

+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2

=> x^2  = 2y^2+1 chia hết cho 3

=> x chia hết cho 3 ( vì 3 là số nguyên tố )

=> x = 3

=> y = 2

Vậy x=3 và y=2

Tk mk nha

10 tháng 8 2021

Ta có: x:y:z =4:5:6

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)

\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)

\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)

\(\dfrac{x}{4}=9\Rightarrow x=36\)

\(\dfrac{y}{5}=9\Rightarrow y=45\)

\(\dfrac{z}{6}=9\Rightarrow z=54\)

 

25 tháng 8 2021

chắc đề cho x,y chứ x+y=6,x-y=4,xy=5

(làm ra bạn tự thay số vào tính)

a,\(=>A=\left(x+y\right)^2-2xy=.....\)

b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)

c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)

d,\(=>D=\dfrac{x+y}{xy}=.....\)

e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)

25 tháng 8 2021

thanks

 

NV
13 tháng 1 2024

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1 2024

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)