K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

\(\sqrt{x}+1⋮\sqrt{x-3}\left(đk:x\ge0\right)\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)⋮\sqrt{x}-3\)

\(\Leftrightarrow4⋮\sqrt{x-3}\)

\(\Leftrightarrow4⋮\sqrt{x-3}\Rightarrow\sqrt{x-3}\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x-3}\in\left\{1;2;3;4;-1;-2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7;2;1;-1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

\(\Leftrightarrow x\in\left\{16;25;49;4;1\right\}\)

P/S: Bn loại các TH x thuộc Z ko t/m nhé

29 tháng 2 2020

Để \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1,1,-2,2,-4,4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2,4,1,5,-1,7\right\}\)

Mà : \(x\inℤ\Rightarrow\sqrt{x}\) phải là một số chính phương

\(\Rightarrow\sqrt{x}\in\left\{4,1\right\}\)

\(\Leftrightarrow x\in\left\{2,1\right\}\)

19 tháng 10 2021

a: Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-4-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-1\)

\(=\dfrac{x-2\sqrt{x}-x+1}{x-1}\)

\(=\dfrac{-2\sqrt{x}+1}{x-1}\)

 

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

17 tháng 12 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

NV
15 tháng 1 2024

\(P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)

\(P\in Z\Rightarrow\sqrt{x}+3=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)

Mà \(\sqrt{x}+3\ge3;\forall x\ge0\)

\(\Rightarrow\sqrt{x}+3=3\)

\(\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

17 tháng 10 2021

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

24 tháng 10 2023

loading...  loading...  loading...  

27 tháng 8 2021

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

A nguyên khi và chỉ khi:

\(\sqrt{x}-3\inƯ_4=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow\sqrt{x}\inƯ_4=\left\{1;2;4;5;7\right\}\)

\(\Leftrightarrow x\inƯ_4=\left\{1;4;16;25;49\right\}\)

Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

hay \(x\in\left\{16;4;25;1;49\right\}\)

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

23 tháng 8 2021

giúp e b2

 

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)