K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Kẻ MD vuông góc với AB (D thuộc AB ),ME vuông góc với AC                                                                                                                                                                                            a) Chứng minh tứ giác ADME là hình chữ nhật.b) Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và kẻ điểm K đốixứng...
Đọc tiếp

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Kẻ MD vuông góc với AB (D thuộc AB ),

ME vuông góc với AC                                                                                                                                                                                            a) Chứng minh tứ giác ADME là hình chữ nhật.

b) Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và kẻ điểm K đối

xứng với B qua H. Chứng minh tứ giác ABFK là hình thoi                                                                                                                                 c , cm : AK vuông góc với CF

0
Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                   ...
Đọc tiếp

Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                                                                                                                C) Gọi I là giao điểm của AM và DH , chứng minh ba điểm C;I;E thẳng hàng

1

a: góc ADM=góc AHM=góc DAH=90 độ

=>ADMH là hình chữ nhật

b: Xét ΔACB có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

mà MA=MB

nên AMBE là hình thoi

c:ADMH là hcn

=>I là trung điểm chung của AM và DH

Xét tứ giác ACME có

ME//AC

ME=AC

=>ACME là hbh

mà I là trung điểm của AM

nên i là trung điểm của CE

=>C,I,E thẳng hàng

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)

Diện tích hình chữ nhật ADME là:

\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)

c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE

mà AD=AB/2; AE=AC/2

nên AB=AC

Sửa đề: Đường trung tuyến AM

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc B=góc C

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF và ME=MF

AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

11 tháng 8 2023

a: ΔBEM=ΔCFM

b: AM là trung trực của EF

c: EF//BC

25 tháng 7 2017

Cô gọi ý nhé. Vì bài này cơ bản.

a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.

b) Do ADME là hình chữ nhật nên DE = AM.

Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)

Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.

Vậy DE = 5cm.

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

17 tháng 6 2020

                                                                            A B H M C E D

a) Xét \(\Delta ABC\)cân tại A có AM là trung tuyến \(\Rightarrow\)M là trung điểm BC

\(\Rightarrow MB=MC\)

Xét \(\Delta MDC\)và \(\Delta MHB\)có: +) \(\widehat{BHM}=\widehat{CDM}=90^o\)

                                                       +) \(MB=MC\)

                                                       +) \(\widehat{BMH}=\widehat{CMD}\)( đối đỉnh )

\(\Rightarrow\Delta MDC=\Delta MHB\)( cạnh huyền - góc nhọn ) ( đpcm )

b) Từ \(\Delta MDC=\Delta MHB\)\(\Rightarrow\widehat{C}=\widehat{MBH}\)( 2 góc tương ứng )

mà \(\widehat{C}=\widehat{ABC}\)\(\Delta ABC\)cân tại A ) \(\Rightarrow\widehat{ABC}=\widehat{MBH}\)

Xét \(\Delta BME\)và \(\Delta BMH\)có: +) \(\widehat{BEM}=\widehat{BHM}=90^o\)

                                                      +) chung cạnh MB

                                                      +) \(\widehat{ABC}=\widehat{HBC}\)

\(\Rightarrow\Delta BME=\Delta BMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow ME=MH\)( 2 cạnh tương ứng ) \(\Rightarrow\Delta EMH\)cân tại M ( đpcm )

17 tháng 6 2020

Giúp mk vs moi người ơi!!!