K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Chương II : Tam giác

a) Xét ΔADCΔADCΔABEΔABE có:

AD=ABAD=AB (giả thiết)

ˆDAC=ˆBAEDAC^=BAE^ (=90o+ˆBAC)(=90o+BAC^)

AC=AEAC=AE (giả thiết)

⇒ΔADC=ΔABE⇒ΔADC=ΔABE (c.g.c)

⇒CD=EB⇒CD=EB (hai cạnh tương ứng) (đpcm)

Gọi CD∩BE=FCD∩BE=FCD∩AB=GCD∩AB=G để chứng minh CD⊥BECD⊥BE cần chứng minh ˆF1=90oF1^=90o thật vậy:

Xét ΔGBFΔGBF

ˆG1+ˆB1+ˆF1=180oG1^+B1^+F1^=180o (tổng 3 góc trong một tam giác)

⇒ˆF1=180o−(ˆG1+ˆB1)⇒F1^=180o−(G1^+B1^)

ˆG1=ˆG2G1^=G2^ (đối đỉnh) và

ˆB1=ˆADCB1^=ADC^ (ΔADC=ΔABEΔADC=ΔABE hai góc tương ứng)

⇒ˆG1+ˆB1=ˆG2+ˆADC=180o−ˆDAB=180o−90o=90o⇒G1^+B1^=G2^+ADC^=180o−DAB^=180o−90o=90o

⇒ˆF1=180o−90o=90o⇒F1^=180o−90o=90o

⇒DC⊥BE⇒DC⊥BE (đpcm)

b) Xét ΔΔ vuông ADIADIΔΔ vuông BAHBAH có:

AD=BAAD=BA (giả thiết)

ˆIAD=ˆHBAIAD^=HBA^ (do cùng cộng với ˆBAHBAH^ bằng 90^o)

⇒ΔADI=ΔBAH⇒ΔADI=ΔBAH (ch-gn)

⇒ID=HA⇒ID=HA (hai cạnh tương ứng) (đpcm) (1)

c) Xét ΔΔ vuông AHCAHCΔΔ vuông EKAEKA có:

AC=EAAC=EA (giả thiết)

ˆHCA=ˆKAEHCA^=KAE^ (cùng cộng với ˆHACHAC^ bằng 90^o)

⇒ΔAHC=ΔEKA⇒ΔAHC=ΔEKA (ch-gn)

⇒AH=EK⇒AH=EK (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra ID=EKID=EK

và gọi DE∩IK=J⇒ˆKJE=ˆIJDDE∩IK=J⇒KJE^=IJD^ (đối đỉnh)

⇒Δ⇒Δ vuông KJE=ΔKJE=Δ vuông IJDIJD (cgv-gn)

⇒KJ=IJ⇒KJ=IJEJ=DJ⇒JEJ=DJ⇒J là trung điểm của KI và ED

⇒DE⇒DEIKIK có trung điểm J trung (đpcm)

28 tháng 2 2020

Bạn muốn rõ hơn thì vào đây --->https://hoidap247.com/cau-hoi/277766

19 tháng 3 2022

 

 

19 tháng 3 2022

a, Ta có:

góc DAB = góc EAC( Vì cùng phụ góc BAC)

AD= AC

AB=AE

Nên tam giác ABD = tam giác AEC

Vây BD = CEb,

b, Ta có: góc NAC = góc ADE ( cmt )

Mà góc NAC + góc DAM = 90 độ nên ADE + góc DAM = 90 độ

Vậy DIA = 90 độ

Áp dụng pytago ta có:

AD2+IE2/DI2+AE2=(AD2+DI2)+(AE2−AI2)/DI2+AE2=1

19 tháng 3 2022

cm tam giác abd = tam giác ace

 

1 tháng 1 2021

a)   ta có :∠EAC=90(gt)

                ∠BAD=90o(gt)

=>∠EAC+∠BAC=∠BAD+∠BAC

=>∠EAB=∠DAC

Xét △ADC và △ABC,có:

AD=AB(gt)

∠CAB=∠EAB(cmt)

AE=AC(gt)

=>△ADC=△ABE(c.g.c)

=>BE=DC(t/ư)

a: Xét ΔCAE và ΔDAB có

CA=DA

góc CAE=góc DAB

AE=AB

=>ΔCAE=ΔDAB

=>CE=DB

b: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hbh

=>góc BAC+góc ACN=180 độ

13 tháng 12 2017

mk ko bít làm đâu

18 tháng 4 2020

Đéo bt đmm

21 tháng 8 2023

Để chứng minh rằng BD = CE và BD vuông góc với CE, ta sẽ sử dụng một số kiến thức về tam giác và hình học.

a) Để chứng minh BD = CE, ta sẽ sử dụng tính chất của tam giác vuông. Vì AD = AC và góc BAD = góc CAE = 90 độ, nên tam giác ABD và tam giác ACE là hai tam giác vuông cân. Do đó, ta có AB = AC và góc ABD = góc ACE. Từ đó, ta có thể kết luận rằng BD = CE.

b) Để chứng minh BD vuông góc với CE, ta sẽ sử dụng tính chất của đường thẳng vuông góc. Vì AD vuông góc AC và AE vuông góc AB, nên ta có thể kết luận rằng đường thẳng BD là đường thẳng vuông góc với đường thẳng CE.

Với các bước chứng minh trên, ta đã chứng minh được rằng BD = CE và BD vuông góc với CE trong tam giác ABC nhọn.

Câu này đã có từ lâu rồi :((