cho (P): y =\(ax^2\)
a/ xác định a để (P) qua A(1;1)
b/gọi (d) là đường thẳng qua A và cắt trục Ox tại M có hoành độ m(m#1). viết phương trình (d) và tìm m để (d) và (P) chỉ có 1 điểm chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đồ thị hàm số đi qua điểm A(2; 1) thì 1 = a.2 + 1 ⇒ a = 0
Vậy giá trị cần tìm là a = 0
A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b ⇒ b = 2 – a (1)
B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)
Thay (1) vào (2) ta được: 2a + 2 – a = 1 ⇒ a = –1 ⇒ b = 2 – a = 3.
Vậy a = –1; b = 3.
vì đồ thị hàm số y = ax đi qua A(-3; -2) nên ta có : - 2 = a. (-3) => a = 2/3
a: Thay x=-1 và y=-4 vào (d), ta được:
\(a\cdot\left(-1\right)+b=-4\)
=>-a+b=-4(1)
Thay x=2 và y=5 vào (d), ta được:
\(a\cdot2+b=5\)
=>2a+b=5(2)
Từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-4\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\2a+b=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=3\\b=5-2a=5-6=-1\end{matrix}\right.\)
Vậy: (d): y=3x-1
b: Để A,B,C thẳng hàng thì C nằm trên đường thẳng AB
=>C thuộc (d)
Thay x=m và y=8 vào y=3x-1, ta được:
3m-1=8
=>3m=9
=>m=3