H={5,6,7,8} tìm tập hợp con gồm 3 phần tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
câu a có 8 tập hợp con, câu b có 2tập hợp con
câu b)A có các tập hợp con là: 1; 2; 3;1và3;1và2;2và3;1,2và3.
B có các tập hợp con là: 5.
câu c)1,2và5;1,3và5; 2,3và5.
Với mỗi cách chọn ra đúng 3 phần tử của tập A ta được một tập con gồm đúng 3 phần tử, nên số tập con cần tìm bằng C 10 3 .
Chọn đáp án C.
Chọn C
Lấy đúng 3 phần tử của tập hợp gồm 10 phần tử là một tổ hợp chập 3 của 10.
Do đó, số tập con cần tìm là C 10 3 .