Cho ΔABC thỏa mãn: \(cos\dfrac{C}{2}.cos\left(A-B\right)+cosC.cos\left(\dfrac{A-B}{2}\right)=0\)
Tính \(sinA+sinB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{cosa+cos5a+cos3a}{sina+sin5a+sin3a}=\dfrac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}\)
\(=\dfrac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\dfrac{cos3a}{sin3a}=cot3a\)
\(\left(\dfrac{cosa}{sinb}+\dfrac{sina}{cosb}\right)\left(\dfrac{1-cos4b}{cos\left(a-b\right)}\right)=\dfrac{\left(cosa.cosb+sina.sinb\right)}{sinb.cosb}.\dfrac{2sin^22b}{cos\left(a-b\right)}\)
\(=\dfrac{cos\left(a-b\right)}{\dfrac{1}{2}sin2b}.\dfrac{2sin^22b}{cos\left(a-b\right)}=4sin2b\)
pi/2<a,b<pi
=>cos a<0; cos b<0; sin a>0; sin b>0
\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)
\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)
sin(a-b)=sina*cosb-sinb*cosa
\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)
\(sin\left(\frac{\pi}{7}\right)H=sin\left(\frac{\pi}{7}\right)cos\left(\frac{2\pi}{7}\right)+sin\left(\frac{\pi}{7}\right)cos\left(\frac{4\pi}{7}\right)+sin\left(\frac{\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)\)
\(=\frac{1}{2}\left[sin\left(\frac{3\pi}{7}\right)-sin\left(\frac{\pi}{7}\right)+sin\left(\frac{5\pi}{7}\right)-sin\left(\frac{3\pi}{7}\right)+sin\pi-sin\left(\frac{5\pi}{7}\right)\right]\)
\(=-\frac{1}{2}sin\left(\frac{\pi}{7}\right)\)
\(\Rightarrow H=-\frac{1}{2}\)
\(sinA+sinB+sinC=2sin\left(\frac{A+B}{2}\right)cos\left(\frac{A-B}{2}\right)+2sin\left(\frac{C}{2}\right)cos\left(\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}cos\left(\frac{A-B}{2}\right)+2cos\left(\frac{A+B}{2}\right)cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left[cos\left(\frac{A-B}{2}\right)+cos\left(\frac{A+B}{2}\right)\right]\)
\(=4cos\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}\)
2.
ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)
\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)
\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))
Nếu \(y=1\), khi đó:
\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)
Phương trình này vô nghiệm
Nếu \(y=2x-1\), khi đó:
\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))
\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)
Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)
Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\); \(2x>0\)
\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)
Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)
Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)
\(\dfrac{\Omega}{2}< a< \Omega\)
=>\(cosa< 0\)
\(sin\alpha=\dfrac{1}{3}\)
\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)
mà cosa<0
nên \(cos\alpha=-\dfrac{2\sqrt{2}}{3}\)
\(cos\left(\alpha-\dfrac{\Omega}{6}\right)=cos\alpha\cdot cos\left(\dfrac{\Omega}{6}\right)+sin\alpha\cdot sin\left(\dfrac{\Omega}{6}\right)\)
\(=-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2\sqrt{6}+1}{6}\)