Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O) và AB < AC. Các đường cao AD, BE, CF của tam giác ABC gặp nhau tại H. Gọi I là giao điểm hai đường thẳng EF và CB. Đường thẳng AI cắt (O) tại M (M khác A).
a. Chứng minh năm điểm A, M, F, H, E cùng nằm trên một đường tròn.
b. Gọi N là trung điểm của BC. Chứng minh ba điểm M, H, N thẳng hàng.
c. Chứng minh BM.AC + AM.BC = AB.MC