K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

\(B=\frac{a}{x\left(x+a\right)}+\frac{a}{\left(x+a\right)\left(x+2a\right)}+\frac{a}{\left(x+2a\right)\left(x+3a\right)}+....+\frac{a}{\left(x+9a\right)\left(x+10a\right)}+\frac{1}{x+10a}\)

  \(=\frac{1}{x}-\frac{1}{x+a}+\frac{1}{x+a}-\frac{1}{x+2a}+\frac{1}{x+2a}-\frac{1}{x+3a}+....+\frac{1}{x+9a}-\frac{1}{x+10a}+\frac{1}{x+10a}\)

\(=\frac{1}{x}\)

22 tháng 10 2022

Bạn ơi, thay 1=a nhé!

Bạn sai rùi

3 tháng 5 2017

\(B=\dfrac{a}{x^2+ax}+\dfrac{a}{x^2+3ax+2a^2}+\dfrac{a}{x^2+5ax+6a^2}+\dfrac{a}{x^2+7ax+12a^2}+\dfrac{a}{x^2+9ax+20a^2}\)

\(=\dfrac{a}{x\left(x+a\right)}+\dfrac{a}{\left(x+a\right)\left(x+2a\right)}+\dfrac{a}{\left(x+2a\right)\left(x+3a\right)}+\dfrac{a}{\left(x+3a\right)\left(x+4a\right)}+\dfrac{a}{\left(x+4a\right)\left(x+5a\right)}\)

\(=\dfrac{5a}{x^2+5ax}\)

10 tháng 8 2016

Bài 1:

a)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

b)\(=1008\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008\cdot\left(1-\frac{1}{2017}\right)\)

\(=1008\cdot\frac{2016}{2017}\)\(=\frac{290304}{31}\)    
10 tháng 8 2016

Bài 2:

a)\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{2}{7}\)

b)\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)

\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\cdot\frac{6}{28}\)

\(=\frac{15}{14}\)

Bài 3:

a)Đặt \(A=-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}\)

\(=-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)\right]\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]\)

\(=-\left[10\cdot\frac{4}{55}\right]\)

\(=-\frac{8}{11}\).Thay vào ta có: \(x-\frac{8}{11}=\frac{2}{9}\)

\(\Leftrightarrow x=\frac{94}{99}\)

b)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

\(x+1=18\)

\(x=17\)

 

24 tháng 3 2016

\(f'\left(x\right)=x^2+2x+3a;g'\left(x\right)=x^2-x+a\)

Ta cần tìm a sao cho g'(x) có 2 nghiệm phân biệt \(x_1\)<\(x_2\) và f'(x) có 2 nghiệm phân biệt \(x_3\)<\(x_4\) sao cho

 \(x_1\) <\(x_3\)<\(x_2\) <\(x_4\) và  \(x_3\)<\(x_1\)<\(x_4\) <\(x_2\)  => \(\begin{cases}\Delta'_1=1-3a>0;\Delta'_2=1-4a>0\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\)

                                                            \(\Leftrightarrow\begin{cases}a<\frac{1}{4}\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\) (*)Ta có : \(f'\left(x_1\right)f'\left(x_2\right)<0\) \(\Leftrightarrow\left[g'\left(x_1\right)+3x_1+2a\right]\left[g'\left(x_2\right)+3x_2+2a\right]<0\)                                         \(\Leftrightarrow\left(3x_1+2a\right)\left(3x_2+2a\right)<0\)                                         \(\Leftrightarrow9x_1x_2+6a\left(x_1+x_2\right)+4a^2=a\left(4a+15\right)<0\)                                         \(\Leftrightarrow-\frac{15}{4}\)<a<0