BÀi 8 cho biểu thức A=3/n+2(với n là số nguyên )
a, số nguyên n phải thỏa mãn điều kiện gì để A là phân số
b, tìm n để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a, Để A là phân số thì \(n-3\ne0\Rightarrow n\ne3\)
b, Để \(A\in Z\)
\(\Rightarrow\dfrac{6}{n-3}\in Z\\ \Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng
n-3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -3 | 0 | 1 | 2 | 4 | 5 | 6 | 9 |
Vậy \(n\in\left\{-3;0;1;2;4;5;6;9\right\}\)
a. Điều kiện để M là phân số là: số tận cùng của \(n\ne4;9\)
b.Điều kiênj để M là một số nguyên là:
\(5⋮n+1\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;4;-6\right\}\) ( vì \(n+1\ne0\)
a) Số nguyên n phải có điều kiện sau để M là phân số là:
\(n+1\ne0;5;-5\)
\(n\ne0\)
\(n\ne-1\)
\(n\ne4\)
\(n\ne-6\)
Như vậy, n không thuộc các số nguyên trên và n các tất cả các số nguyên còn lại.
Với điều kiện như thế, M sẽ là phân số.
b) Số nguyên n phải có điều sau để M là số nguyên là:
\(5 ⋮ n+1\) thì M sẽ là số nguyên \(\left(n\inℤ\right)\), hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
ĐCĐK | TM | TM | TM | TM |
Vậy \(n=\left\{-6;-2;0;4\right\}\)
Cho biểu thức A = 3/n+2
a)số nguyên n phải thỏa mãn điều kiện gì để A là phân số
Diều kiện: \(n+2\ne0\Leftrightarrow n\ne-2\)
b)tính giá trị của A khi n=3
Thay n=3 vào A ta được;
A=\(\frac{3}{3+2}=\frac{3}{5}\)
c)tìm các số nguyên n để A là một số nguyên
Để A là số nguyên thì: \(3⋮n+2\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy .....
a) Để A là phân số thì
\(n+2\ne0=>n\ne-2\)2
b) Zới n=0 (TMĐK) thì biểu phân A là
\(\frac{3}{n+2}=>\frac{3}{0+2}=\frac{3}{2}\)
zậy phân số A là \(\frac{3}{2}\)khi n=0
mấy cái kia tương tự
a Điều kiện để \(\frac{3}{n+2}\)mà số nguyên n thỏa mãn là n\(\ne\)-2
b, Với n=0
\(\Rightarrow\frac{3}{n+2}=\frac{3}{0+2}=\frac{3}{2}\)
Với n=2
\(\Rightarrow\frac{3}{n+2}=\frac{3}{2+2}=\frac{3}{4}\)
Với n=7
\(\Rightarrow\frac{3}{n+2}=\frac{3}{7+2}=\frac{3}{9}\)
c, Để\(\frac{3}{n+2}\)nhận giá trị số nguyên thì
\(\Leftrightarrow3\)chia hết cho n+2
\(\Rightarrow n+2\inƯ\left(3\right)\)={-1;-3;1;3}
Ta có bảng giá trị
n+2 | -1 | -3 | 1 | 3 |
n | -3 | -5 | -1 | 1 |
Vậy n={-3;-5;-1;1}
cho mình nhé Thảo Nguyên
\(A\) là phân số khi \(n+2\ne0\)
\(\Leftrightarrow n\ne-2\)
b) khi \(n=0\Leftrightarrow A=\frac{3}{2}\)
khi \(n=2\Leftrightarrow A=\frac{3}{4}\)
khi \(n=7\Leftrightarrow A=\frac{1}{3}\)
c) để \(A\in Z\)thì \(3⋮\left(n+2\right)\)
\(\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{\pm1;\pm3\right\}\)
+ \(n+2=-1\Leftrightarrow n=-3\)
+ \(n+2=1\Leftrightarrow n=-1\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=-3\Leftrightarrow n=-5\)
vậy để \(A\in Z\) thì \(n\in\left\{\pm1;-5;-3\right\}\)
ai giúp mình với
a)n không bằng-2
b) tự làm