K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

\(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne3\end{cases}}\)

\(P=\frac{x^3-3x^2+6}{x^2-3x}=\frac{x^3-3x^2}{x^2-3x}+\frac{6}{x^2-3x}=x+\frac{6}{x^2-3x}\)

Để \(P\) nguyên thì \(\Leftrightarrow x+\frac{6}{x^2-3x}\) nguyên mà \(x\in Z\)

\(\Leftrightarrow\frac{6}{x^2-3x}\in Z\) 

\(\Leftrightarrow x^2-3x\inƯ\left(6\right)\)

\(\Leftrightarrow x^2-3x=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Đến đây tự kẻ cái bảng ra  .............. 

Vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\) thì \(P\)nhận giá trị nguyên.

10 tháng 1 2018

mk cần gấp lắm các bạn ạk

10 tháng 1 2018

BÀI 1:

a)  \(ĐKXĐ:\)          \(x-3\)\(\ne\)\(0\)

                          \(\Leftrightarrow\)\(x\)\(\ne\)\(3\)

b)   \(A=\frac{x^3-3x^2+4x-1}{x-3}\)

\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)

\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)

\(=x^2+4+\frac{11}{x-3}\)

Để  \(A\)có giá trị nguyên thì  \(\frac{11}{x-3}\)có giá trị nguyên

hay  \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau

\(x-3\)    \(-11\)         \(-1\)             \(1\)           \(11\)

\(x\)             \(-8\)               \(2\)              \(4\)           \(14\)

Vậy....

25 tháng 2 2020

Trước tiên ta đi rút gọn biểu thức trên :

Đặt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

ĐKXĐ : \(x\ne\pm2,x\ne0\)

Ta có : \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(=\left(\frac{x\cdot3-6\cdot\left(x+2\right)+3\cdot\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\frac{-18}{3\left(x-2\right)\left(x+2\right)}:\left(-\frac{6}{x+2}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{\left(-6\right)}=\frac{1}{x-2}\)

Để \(A\) nhận giá trị nguyên 

\(\Leftrightarrow\frac{1}{x-2}\inℤ\) \(\Leftrightarrow1⋮x-2\) \(\Leftrightarrow x-2\inƯ\left(1\right)\)

\(\Leftrightarrow x-2\in\left\{-1,1\right\}\)

\(\Leftrightarrow x\in\left\{1,3\right\}\)  ( Thỏa mãn ĐKXĐ )

Vậy : \(x\in\left\{1,3\right\}\) thì A nhận giá trị nguyên.

30 tháng 1 2019

a, A xác định

\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)

\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)

\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)

b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)

\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)

\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)

c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)

\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)

Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)

30 tháng 3 2019

Bài của Hùng rất thông minh

Đang định có cách khác mà dài hơn cách Hùng nên thui

^^ 2k5 kết bạn nhé 

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

7 tháng 12 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

25 tháng 11 2019

a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)

A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)

b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)

Để A \(\in\)Z <=> 2 \(⋮\)x - 1

<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){2; 0; 3; -1}

c) Ta có: A < 0

=> \(\frac{x+1}{x-1}< 0\)

=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\) 

=> -1 < x < 1

25 tháng 11 2019

Edogawa Conan

Thiếu dòng đầu  \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)

2 tháng 2 2017

a, B=[(x+3)/(x-3)+(2x^2-6)/(9-x^2)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x^2-9)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x-3)(x+3)+x/(x+3)]:[(6x-12)/2(x-3)(x+3)]

={[(x+3)^2-2x^2+6+x(x-3)]/(x-3)(x+3)}:[6(x-2)/2(x-3)(x+3)]

=(x^2+6x+9-2x^2+6+x^2-3x)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3x+15/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3(x+5)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3

=3(x+5)/(x-3)(x+3).2(x-3)(x+3)/6(x-2)

=3(x+5).6/(x-2)

=6(x+5)/6(x-2)

=x+5/x-2

b,Ta thay : x=1

=>x+5/x-2=1+5/1-2=-6

Ta thay : x=-3

=>x+5/x-2=-3+5/-3-2=-2/5

c, Ta co : x+5/x-2=0

x+5=(x-2).0

x+5=0

x=-5

Vậy : x=-5