K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

A B C E D F

D)VÌ\(\Delta ADF=\Delta EDC\left(cmt\right)\)

\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)(HAI GÓC TƯƠNG ỨNG)

TA CÓ \(\widehat{ADE}+\widehat{EDC}=180^o\left(KB\right)\)

THAY  \(\widehat{ADE}+\widehat{ADF}=180^o\)

       \(\widehat{FDE}=180^o\)

=> BA ĐIỂM F ,D,E THẲNG HÀNG

26 tháng 2 2020

a) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(BC^2=AB^2+AC^2\left(\text{Đ}/LPY-TA-GO\right)\)

THAY\(BC^2=3^2+4^2\)

\(BC^2=9+16\)

\(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

26 tháng 2 2020

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2

=> BC2 = 32 + 42  => BC2 = 9 + 16 => BC2 = 25 => BC = 5 (cm)

b, Vì BD là phân giác ABC => ABD = DBC = ABC : 2

Xét △BAD và △BED

Có: AB = BE (gt)

    ABD = EBD (cmt)

  BD là cạnh chung

=> △BAD = △BED (c.g.c)

c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)

Và BAD = BED (2 góc tương ứng)  

Mà BAD = 90o => BED = 90o

Xét △ADF vuông tại A và △EDC vuông tại E

Có: AF = EC (gt)

      AD = ED (cmt)

=> △ADF = △EDC (2cgv)

=> DF = DC (2 cạnh tương ứng)

d, Vì △ADF = △EDC (cmt) => ADF = EDC (2 góc tương ứng)  

Ta có: ADE + EDC = 180o (2 góc kề bù)

=> ADE + ADF = 180o

=> EDF = 180o

=> 3 điểm E, D, F thẳng hàng

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

a) Xét ∆BAD và ∆BDE có

    AB = BE (gt)

    góc ABD = góc DBE ( AD là phân giác ABC)

    BD chung

do đó ∆ABE = ∆BED (c.c.c)

=> AD = DE

b) Gọi giao điểm của BD và FC là H

Xét ∆ADF và ∆EDC có:

   AD = DE (cmt)

   góc ADF = góc EDC (2 góc đối đỉnh)

   AF = EC (gt)

do đó ∆ADF = ∆DEC (c.g.c)

=> DF = DC

=> ∆DFC cân tại D

=> DH là đường cao => DH ⊥ FC

=> BD ⊥ FC (D ∈ BH)

c) Sai đề r

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0