Cho a+b=2 và \(a^2+b^2=20\). Tính M= \(a^3+b^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b)2=a2+2ab+b2=22=4
=>2ab=4-a2-b2
=>2ab=4-20
=>2ab=-16
=>ab=-8
(a+b)(a2+b2)=(a+b)a2+(a+b)b2=a3+a2b+ab2+b3
=a3+b3+ab(a+b)=2.20
=>a3+b3+-16.2=40
=>a3+b3=40+32
=>a3+b3=72
Ta có:(a+b)^2=2^2
<=>a^2+2ab+b^2=4
<=>20+2ab=4
<=>ab=-8
Lại có:a^3+b^3=(a+b)(a^2-ab+b^2)
=2(20+8)=56
Vậy a^3+b^3=56
Đặt S = a + b
P = a * b
\(a^2+b^2=20\)
\(a^2+2ab+b^2-2ab=20\)
\(\left(a+b\right)^2-2ab=20\)
\(6^2-2P=20\)
\(36-2P=20\)
\(2P=36-20\)
\(2P=16\)
\(P=8\)
\(a^3+b^3\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=S^3-3PS\)
\(=6^3-3\cdot8\cdot6\)
\(=216-144\)
\(=72\)
\(a^2+b^2=20\Leftrightarrow\left(a+b\right)^2-2ab=20\Leftrightarrow2^2-2ab=20\Rightarrow ab=-8\)
\(M=a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)=2^3-3.\left(-8\right).2=56\)
1) A+B = \(-2x^2+3x^4+4x^3+1\)
A-B = \(3x^4-2x^2-4x^3+1\)
2) A+B= 0 + 0 + 5
⇒A+B = 5
A-B = \(-4x^3+2x^2-35\)
3) A+B = \(5y^2-8xy\)
A-B = \(-2x^2-3y^2\)
\(a+b=2\Rightarrow\left(a+b\right)^2=4\Rightarrow a^2+b^2+2ab=4\Rightarrow20+2ab=4\Rightarrow2ab=-16\Rightarrow ab=-8\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=2\left(20+8\right)=2.28=56\)
Ta có
\(a+b=2\)
\(\Leftrightarrow a^2+b^2+2ab=4\)
\(\Leftrightarrow2ab=4-\left(a^2+b^2\right)\)
\(\Leftrightarrow ab=-8\)
\(\Leftrightarrow\hept{\begin{cases}a^2b=-8a\\ab^2=-8b\end{cases}}\)
Lại có
\(\left(a+b\right)\left(a^2+b^2\right)=a^3+b^3+a^2b+ab^2\)
\(=a^3+b^3-8a-8b\)
\(=a^3+b^3-8\left(a+b\right)\)
\(=a^3+b^3-16\)
Mà \(\left(a+b\right)\left(a^2+b^2\right)=2.20=40\)
Nên \(a^3+b^3-16=40\)
\(a^3+b^3=56\)
Vậy \(a^3+b^3=56\)