cho tam giác abc có AB = AC .ke BM vuong goc voi AC , CN vuong goc voi AC ( M thuoc AC , N thuoc AB ) H la giao diem cua BM va CN
a , cm AM = AN
b , goi K la trung diem BC . cm A , M , K thang hang'
lam giup mk nhanh nhe , mk dang ban lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
a,* Xét tam giác ABI và tam giác ACI có :
cạnh AI chung
góc BAI = góc CAI ( vì AI là phân giác góc A )
AB = AC
Do đó : tam giác ABI = tam giác ACI ( c.g.c )
\(\Rightarrow\)IB = IC ( cạnh tương ứng ) ( 1 )
* Vì AB = AC nên tam giác ABC cân tại A :
=> góc B = góc C
Xét hai tam giác vuông BHI và tam giác vuông CKI có :
góc BHI = góc CKI = 90độ
IB = IC ( theo ( 1 ) )
góc B = góc C ( theo chứng minh trên )
Do đó : tam giác BHI = tam giác CKI ( cạnh huyền - góc nhọn )
=> IH = IK ( cạnh tương ứng )
b,Xét tam giác HIE và tam giác KIF có :
góc IHE = góc IKF = 90độ
IH = IK ( theo câu a )
góc HIE = góc KIF( đối đỉnh )
Do đó : tam giác HIE = tam giác KIF ( g.c.g )
=> IE = IF ( cạnh tương ứng )
=> tam giác IEF cân tại I
=> góc IEF = góc IFE = \(\frac{180^0-\widehat{EIF}}{2}\)(2)
Ta lại có : IH = IK
=> tam giác IHK cân tại I
=> góc IKH = góc IHK = \(\frac{180^0-\widehat{HIK}}{2}\) (3)
mà góc HIK = gócEIF (4)
Từ (2) , (3) và (4) suy ra :
góc IEF = góc IFE = góc IKH = góc IHK
mà góc IEF = góc IKH ở vị trí so le trong
=> HK // EF .
Học tốt
Vì AB = AC => tam giác ABC cân tại A
=> <B = <C
Vì <AHI = <AKI (= 90o)
mà <HAI = <KAI
=> <AHI - <HAI = <AKI - <KAI
=> I2 = I3
Xét tam giác vuông AHI và tam giác vuông AKI có :
+ <HAI = <KAI (gt)
+) <I2 = I3 (cmt)
+) AI chung
=> \(\Delta AHI=\Delta AKI\)(g.c.g)
=> IH = IK (cạnh tương ứng)
Xét tam giác ABI = tam giác ACI có
+) AB = AC
+) <BAI = <CAI
+) AI chung
=> tam giác ABI = tam giác ACI (c.g.c)
=> BI = CI (cạnh tương ứng)
b) Kéo dai AI sao cho AI giao EF tại N
Xét tam giác HIE và tam giác KIF có :
+) <IHE = <IKF (= 90o)
+) <HIE = <KIF (đối đỉnh)
+) HI = IK (câu a)
=> tam giác HIE = tam giác KIF (g.c.g)
=> HE = KF
Lại có AH = AK (vì AB = AC ; BH = CK => AB - BH = AC - CK => AH = AK)
=> AH + HE = AK + KF
=> AE = AF
=> tam giác AEF cân tại A => <E = <F
Trong tam giác AEF có <A + <E + <F = 180o
=> <A + 2<F = 180o (Vì <E = <F)
=> <F = (180o - <A) : 2 (1)
Vì AH = AK
=> Tam giác AHK cân tại A
=> <AHK = <AKH
Trong tam giác AHK có
<A + <AHK + <AKH = 180o
=> <A + 2<AKH = 180o (Vì <AHK = <AKH)
=> <AKH = (180o - A)/2 (2)
Từ (1) (2) => <AKH = <F
=> HK//EF (2 góc đồng vị bằng nhau)
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
a)Ta xét trong tam giác ABH có Góc H =90độ
=>BAHˆ+ABHˆ=90
mà BAHˆ+HACˆ=90=A^(gt)
=>ABHˆ=HACˆ
Xét tam giác BHA và Tam giác AIC có:
AB=AC(gt)
H^=AICˆ=90(gt)
ABHˆ=HACˆ(c/m trên)
=>Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn)
=>BH=AI(hai cạnh tương ứng)
b)Vì Tam giác BHA=Tam giác AIC(c/m trên)
=>IC=AH(hai cạnh tương ứng)
Xét trong tam giác vuông ABH có:
BH2+AH2=AB2
mà IC=AH
=>BH2+IC2=AB2(th này là D nằm giữa B và M)
Ta có thể c/m tiếp rằng D nằm giữa M và C thì ta vẫn c/m được Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn) và BH2+IC2=AC2=AB2
=>BH2+CI2 có giá trị ko đổi
c)Ta xét trong tam giác DAC có IC,AM là 2 đường cao và cắt nhau tại N(AM cũng là đường cao do là trung tuyến của tam giác cân xuất phát từ đỉnh và cũng chính là đường cao của đỉnh đó xuống cạnh đáy=>AM vuông góc với DC)
=>DN chính là đường cao còn lại=>DN vuông góc với AC(là cạnh đối diện đỉnh đó)
d)Ta dễ dàng tính được Tam giác DMN cân tại M=>DM=MN(dựa vào số đo của các góc và 1 số c/m trên)
Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC,Ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn)
=>ME=MF(là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc HICˆ)
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)=>IM là tia phân giác của HICˆ
a, xét tam giác ANC và tam giác AMB có : góc A chung
AB = AC (gt)
góc ANC = góc AMB = 90
=> tam giác ANC = tam giác AMB (ch-gn)
=> AM = AN (đn)
b, xét tam giác ANH và tam giác AMH có: AH chung
AN = AM (Câu a)
góc ANH = góc AMH = 90
=> tam giác ANH = tam giác AMH (ch-gn)
=> góc NAH = góc MAH (đn) AH nằm giữa AN và AM
=> AH là pg của góc NAM (đn) (1)
tam giác ABC cân tại A (gt)
M là trung điểm của BC
=> AM là phân giác của góc BAC (đl) và (1)
=> A;H;K thẳng hàng
thank very much