2008*2009-1/2008^2+2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2016/2017+2017/2018
Do 2016/2017<1,2017/2018<1=> A<2 Hay A<B
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
a) \(\dfrac{2}{5}+\dfrac{4}{5}\times\dfrac{5}{2}\)
\(=\dfrac{2}{5}+\dfrac{4\times5}{5\times2}\)
\(=\dfrac{2}{5}+\dfrac{4}{2}\)
\(=\dfrac{2}{5}+2\)
\(=\dfrac{2}{5}+\dfrac{10}{5}\)
\(=\dfrac{12}{5}\)
b) \(\dfrac{2008}{2009}-\dfrac{2009}{2008}+\dfrac{1}{2009}+\dfrac{2007}{2008}\)
\(=\left(1-\dfrac{1}{2009}\right)-\left(1+\dfrac{1}{2008}\right)+\dfrac{1}{2009}+\left(1-\dfrac{1}{2008}\right)\)
\(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=\left(1-1+1\right)-\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)-\left(\dfrac{1}{2008}+\dfrac{1}{2008}\right)\)
\(=1-\dfrac{2}{2008}\)
\(=\dfrac{2008}{2008}-\dfrac{2}{2008}\)
\(=\dfrac{2006}{2008}\)
\(=\dfrac{1003}{1004}\)
a: =2/5+4/2
=2/5+2
=12/5
b: \(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=1-\dfrac{2}{2008}=1-\dfrac{1}{1004}=\dfrac{1003}{1004}\)
ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1
lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3
vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3
Hay A<B
Vậy A<B
4036089
\(\frac{2008.2009-1}{2008^2+2017}=\frac{2008\left(2008+1\right)-1}{2008^2+2017}=\frac{2008^2+2008-1}{2008^2+2017}=\frac{2008^2+2007}{2008^2+2017}\)
Mình đoán là bạn ghi nhầm đề vì nếu mẫu số là 2008^2+2007 thì biểu thức sẽ bằng 1