K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Hình như đề sai???

13 tháng 4 2021

Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?

a) Sửa đề: ΔAMB=ΔDMC

Xét ΔAMB và ΔDMC có 

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

16 tháng 1

 

a) Xét ΔAMB và ΔDMC có:

\(AM=CM\) (gt) 

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) 

\(BM=CM\) (M là trung điểm của BC) 

\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)

b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow AB=DC\) (2 cạnh t.ứng)  

c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng) 

Mà hai góc này ở vị trí so le trong 

\(\Rightarrow AB//CD\)

15 tháng 7 2016

Xét tam giác ABM và tam giác DCM có: 

AM=MD

góc AMB=góc CMD ( đối đỉnh)

BM=CM ( M là trung điểm của BC)

=> tam giác ABM=tam giác DCM( c.g.c)

b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D

mà chúng là hai góc so le trong => AB//DC

c) Vì AB=AC=> tam giác ABC cân tại A

tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC

d)  Để góc ADC=30 độ thì góc BAM=30 độ

=> góc B= 90 độ-30 độ=60 độ

tam giác ABC cân tai A có góc B =60 độ

=> tam giác ABC đều

Vậy tam giác ABC đều thì góc ADC=30 độ

16 tháng 12 2018

a/                       - AB = AC ( gt )

ABM = ACM vì {  - AM chung 

     (c.c.c)            - MB = MC ( m là trung điểm )

b/ AB // DC k phải AB // BC 

T/g ABM = t/g DCM ( c.g.c)

AM = DM ( gt )

Góc AMB = DMC ( đđ )

BM = CM ( gt )

Có ABM = DCM ( t/g ABM = t/g DCM )

Lại ở vị trí slt 

=> AB // DC

c/ 

AB = AC ( gt )

=> ABC cân tại A

Có AM là trung tuyến ( m là trug điểm )

=> AM là đường cao ABC 

=> AM vuông góc BC