K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow D< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(\Leftrightarrow D< 1-\frac{1}{n}\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

26 tháng 2 2020

Với k là số tự nhiên ta có

k²>k²-k=k(k-1)

=>1/k²<1/[k(k-1)]=[(k-(k-1)]/[k(k-1)]=1/(k-1)-1/k.

Áp dụng BĐT trên ta có

D<1-1/2+1/2-1/3+...+1/(n-1)-1/n

=1-1/n

<1(dpcm)

22 tháng 9 2019

ko hiểu

22 tháng 9 2019

\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)

=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)

=> \(2M=1-\frac{1}{3^{39}}\)

=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)

do \(1-\frac{1}{3^{39}}< 1\)

=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)

Vay \(M< \frac{1}{2}\)

Chuc bn hoc tot !

4 tháng 3 2020

x2+5.x=0

x.x+5.x=0

x.(x+5)=0

*x=0

*x+5=0

     x=0-5

     x=-5

Vậy x=0 hoặc x=-5

17 tháng 12 2021

\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2022}\\ \Leftrightarrow2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}\\ \Leftrightarrow A=2^{2022}-1\\ \Leftrightarrow A+1=2^{2022}\)

Mà \(A+1=2^x\Leftrightarrow x=2022\)

17 tháng 12 2021

cảm ơn nha