N-6 chia het n-1
giai giup em voi a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3+5n
=n(n2+5)
=(n-1)n(n+1)+6n
Ta có tích của 3 số nguyên liên tiếp chia hết cho 6 bởi vì vừa chia hết cho 2, vừa chia hết cho 3.
Mặt khác 6n chia hết cho 6, do đó:
n3 + 5n chia hết cho 6
Ta có \(n^3+5n=n\left(n^2+5\right)=n\left(n^2-1+6\right)\)
\(=n\left(n^2-1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)+6n\)
Vì \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho 6
\(6n\) chia hết cho 6
\(\Rightarrow n\left(n-1\right)\left(n+1\right)+6n\) chia hết cho 6
Vậy \(n^3+5n\) chia hết cho 6
Giả sử \(\left(5^n-1\right)⋮4\)
Suy ra \(5^n⋮5\)(phù hợp)
Vậy \(\left(5^n-1\right)⋮4\)
Cách 2
Ta có:
\(5\equiv1\)(mod 4)
Suy ra \(5^n\equiv1\)(mod 4)
Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)
Vậy \(\left(5^n-1\right)⋮4\)
tìm n phải ko bạn , bài này chắc của lớp 6 :v mà bạn ấn nhầm
n+5 chia hết cho n+2
=> n+2+3 chia hết cho n+2
=> n+2 chia hết cho n+2 ; 3 chia hết cho n+2
=> n+2 thuộc Ư(3)={-1,-3,1,3}
=> n={-3,-5,-1,0}
3n+24 chia het cho n-4
5n-7 chia het co n+2
n^2+5 chia het cho n+1
Giup mk voi nha.thank you very much!
b,5n-7 chia hết cho n+2
=>5n+10-17 chia hết cho n+2
=>5(n+2)-17 chia hết cho n+2
Mà 5(n+2) chia hết cho n+2
=>17 chia hết cho n+2
=>n+2\(\in\)Ư(17)={-17,-1,1,17}
=>n\(\in\){-19,-3,-1,15}
c,n2+5 chia hết cho n+1
=>n2-12+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
=>n+1\(\in\)Ư(6)={-6,-3,-2,-1,1,2,3,6}
=>n\(\in\){-7,-4,-3,-2,0,1,2,5}
a, 3.(n-4) + 36 chia hết n-4
suy ra 36 chia hết n-4
n-4 là ước của 36
tự giải tiếp
b, = 5.(n+2) - 13 chia hết n+2
suy ra -13 chia hết n+2
tự giải tiếp
c, = n.(n+1) - (n+1) +6 chia hết n+1
suy ra 6 chia hết n+1
tự giải tiếp
nha
= \(3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
= \(3^n.30+2^n.12\)
= \(6.\left(3^n.5+2^n.2\right)⋮6\)
Ok nha bn :D
Ta chứng minh: Nếu ƯCLN(a,6)=1 thì a^2 +5 chia hết cho 6
Từ ƯCLN(a,6)=1=> a không chia hết cho 2, a không chia hết cho 3
do a không chia hết cho 2=>(a-1)chia hết cho 2=>a^2+5=a^2-1+6=(a-1)(a+1)+6 chia hết cho 2 (1)
do a không chai hết cho 3 => (a-1)(a+1)+6 chai hết cho 3 (2)
Do ƯCLN(2;3)=1nên kết hợp với (1) và (2) được (a-1)(a+1)+6 chia hết cho (2.3)hay a^2+5 chai hết cho 6
Ngược lại: Từ a^2+5 chia hết cho 6 => ƯCLN(a;6)=1
Ta có a^2+5 chia hết cho 6 => (a-1)(a+1)+6 chia hết cho 6 <=>(a-1)(a+1) chia hết cho 6=>(a-1)(a+1) chia hết cho cả 2 và 3
Với (a-1)(a+1) chia hết 2 =>a lẻ ->ƯCLN(a,3)=1 (3)
Với (a-1)(a+1) chia hết cho 3 mà a-1,a,a+1 là ba số tự nhiên liên tiếp nên có một số chia hết cho 3=>a không chia hết cho 3=>ƯCLN(a,3)=1 (4)
Từ (3) và (4)+>ƯCLN (a,6)=1
Suy ra bài toán đã được chứng minh
Ta có:2n-1 chia hết cho 7
=>2n-1 EƯ(7)={-7,-1,1,7}
=>2nE{-6,0,2,8}
Loại các trường hợp 2n=-6 và 2n=0
=>2nE{2,8}
=>nE{1,3}
n - 6 chia hết cho n - 1
=> n - 1 - 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {-1;1-5;5}
=> n thuộc {0;2;-4;6}
N-6 \(⋮N-1\)
\(\left(N-1\right)\)\(-5\)\(⋮N-1\)
Mà \(\left(N-1\right)\)\(⋮N-1\)
nên 5 \(⋮N-1\)
\(\Rightarrow N-1\inƯ\left(5\right)\)
\(\Rightarrow N-1\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow N\in\left\{2;0;6;-4\right\}\)
Hok tốt !