K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)

b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)

1 tháng 12 2017

là các chữ số chẵn

12 tháng 12 2018

so cuoi cung la 4

24 tháng 10 2021

\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)

24 tháng 10 2021

\(A=\left(2012-1\right)\left(2012+1\right)-2012^2=2012^2-1-2012^2=-1\)

18 tháng 9 2020

Mình camon nha ❤

16 tháng 5 2022

[(23 - 5) . (-3)+9] . (22012 . 2011 - 20122 . 2011+1)

= [ 3 . ( -3 ) + 9] . (22012 . 2011 - 20122 . 2011+1)

=  [ (-9) + 9 ] . (22012 . 2011 - 20122 . 2011+1)

= 0 . (22012 . 2011 - 20122 . 2011+1)

= 0

17 tháng 5 2022

[ (23 - 5) . (-3) + 9 ] . ( 22012 . 2011 - 20122 . 2011+1 )

= [ 3 . ( -3 ) + 9] . (22012 . 2011 - 20122 . 2011+1 )

= 0 . (22012 . 2011 - 20122 . 2011+1) = 0

 

14 tháng 3 2022

Mình đang cần gấp

14 tháng 3 2022

- Số được giảm 100 lần là: 20122 - 100 = 20022

- Tổng của 2 số trên là: 20122 + 20022 = 40144

25 tháng 3 2016

tinh chi vay

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

11 tháng 10 2021

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)