K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

hình : tự vẽ

xét \(\Delta ABC\)cân tại A

=> AB=AC ( t/c tam giác cân)

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)( t/c tam giác cân) (1)

xét \(\Delta AEC\)và \(\Delta AFB\)

\(\widehat{A}\)-chung

AB=AC ( cmt)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\Delta AEC\)=\(\Delta AFB\)(g.c.g)

=AE=AF ( 2 c t ứ)

Xét \(\Delta AEF\): AE=AF (cmt)

=>\(\Delta AEF\)cân tại  A ( đ/nghĩa)

=>\(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân ) (2)

Từ (1) và (2)

=>\(\widehat{AEF}=\widehat{ABC}\)

mà 2 góc này lại ở vị trí đồng vị của EF và BC

=> EF//BC

b) Ta có : AB= AC ( cmt)

AE = AF

=> AB-AE=AC-AF

=>BE=FC

rồi cm nốt ik mik lười quá T_T

11 tháng 12 2018

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Theo tính chất đường phân giác ta có:

$\frac{BE}{ED}=\frac{AB}{AD}$

$\frac{AF}{FC}=\frac{AB}{BC}$

Mà $ABCD$ là hình bình hành nên $AD=BC\Rightarrow \frac{AB}{AD}=\frac{AB}{BC}$ 

$\Rightarrow \frac{BE}{ED}=\frac{AF}{FC}$ (đpcm)

b) Gọi O là giao điểm $AC,BD$. Ta có:

\(\frac{BE}{ED}=\frac{BD-ED}{ED}=\frac{2DO-ED}{ED}=\frac{2DO}{ED}-1\)

Tương tự: \(\frac{AF}{FC}=\frac{2OC}{FC}-1\)

Mà \(\frac{BE}{ED}=\frac{AF}{FC}\Rightarrow \frac{DO}{ED}=\frac{OC}{FC}\). Theo định lý Talet đảo suy ra $EF\parallel DC$ hay $EF\parallel AB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm