K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Vì d là ước chung của n+3 và 5n+6

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\5n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(n+3\right)⋮d\\5n+16⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5n+15⋮d\\5n+16⋮d\end{cases}}}\)

\(\Rightarrow\left(5n+16\right)-\left(5n+15\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

4 tháng 3 2020

bài này dễ quá Hiệp ơi

16 tháng 11 2017

Gọi ƯC ( 5n + 1; 2n + 3 ) là d

Ta có :

5n + 1 \(⋮\)d => 10n + 2 \(⋮\)d

2n + 3 \(⋮\)d => 10n + 15 \(⋮\)d

Mà 2 biểu thức này cùng chia hết cho d

=> 10n + 15 - 10n - 2 \(⋮\)d

hay 13 \(⋮\)d

=> d = +-13

Vậy, ................

16 tháng 11 2017

vậy , ........ là sao

27 tháng 8 2015

Giả sử (5n+6,8n+7)=k, k<>2 do 8n+7 lẻ 
=> (5n+6,[(8n+7)-(5n+6)])=k 
=> (5n+6, 3n+1)=k 
=> (2n+5,3n+1)=k 
=> (n-4, 2n+5)=k 
=> (2n-8,2n+5)=k 
> (13,2n+5)=k 

=>k=13 => 2n+5=13m 
n=(13m-5)/2 (*) Vậy với m lẻ, 
Thay vào (*), được ước chung là 13 và 1 
{ thử với m=1,3 ,5 thì n=4,17,60... đúng} 

* =>k=1 
Với m <>(13m-5)/2 và m=(13m-5)/2 với m chẵn thì 2 số 5n+6 và 8n+7 có ước chung là 1

27 tháng 8 2015

Gọi ƯC(5n+6; 8n+7) là d. Ta có:

5n+6 chia hết cho d => 40n+48 chia hết cho d

8n+7 chia hết cho d => 49n+35 chia hết cho d

=> 40n+48-(40n+35) chia hết cho d

=> 13 chia hết cho d

=> d \(\in\)Ư(13)

=> d \(\in\){1; -1; 13; -13}

2 tháng 11 2015

Gọi d là ƯSC của 5n+6 và 8n+7

=> 5n+6 chia hết cho d nên 8(5n+6)=40n+48 cũng chia hết cho d

=> 8n+7 chia hết cho d nên 5(8n+7)=40n+35 cũng chia hết cho d

=> (40n+48) - (40n+35)=13 cũng chia hết cho d => d là ước của 13 => d thuộc {1; 13}

=> ƯSC của 5n+6 và 8n+7 thuộc {1; 13}

2 tháng 11 2015

Gọi ƯC(5n+6;8n+6) là a.

Ta có:5n+6 chia hết cho a => 40+48 chia hết cho a

 8n+7 chia hết cho a =>49+35 chia hết cho a

=>40n+48-(40n+45) chia hết cho a

=>13 chia hết cho a

=>a thuộc Ư(13)

=>a={1;13}

 

11 tháng 12 2017

sorry mình bị nhầm

19 tháng 10 2015

 

Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d

=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d

=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}

=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7

24 tháng 1 2018

Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}