K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

a, xét tma giác AEB và tam giác DEC có : 

BE = EC  do E là trđ của BC (Gt)

AE = ED do E là trđ của AD (gt)

góc BEA = góc DEC (đối đỉnh)

=> tam giác AEB = tam giác DEC (c-g-c)

b, xét tam giác CEA và tam giác BED có: 

BE = EC (Câu a)

AE = ED (câu a)

góc BED = góc CEA (đối đỉnh)

=> tam giác CEA = tam giác BED (c-g-c)

=> góc DBE = góc ECA (đn) mà 2 góc này slt

=> CA // BD (Đl)

c, xét tam giác AHC và tam giác KHC có : HC chung

AH = HK do K là trđ của AH (gt)

góc AHC = góc KHC =90

=> tam giác AHC = tam giác KHC (2cgv)

=> AC = CK (đn)

mà AC = BD do tam giác BED = tam giác CEA (Câu b)

=> BD = AC = CK 

25 tháng 2 2020

không có ý d à????

10 tháng 4 2022

thiếu đề

21 tháng 9 2023

Tham khảo:

Xét tam giác BFC và tam giác BEC có :

BC chung

FC = BE

\(\widehat {BFC} = \widehat {BEC} = {90^o}\)

 ( cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)

Xét tam giác CFA và tam giác ADC ta có :

CF = AD

AC chung

\(\widehat {ADC} = \widehat {AFC} = {90^o}\)

(cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)

Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau 

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD
b: ΔMAB=ΔMCD

=>góc MAB=góc MCD

=>AB//CD và AB=CD