So sánh
-2020/2019 và -2003/2004
14/31 và 49/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 21^15=3^15*7^15
27^5*49^8=3^15*7^14
mà 15>14
nên 21^15>27^5*49^8
b: \(2020^{2020}-2020^{2019}=2020^{2019}\left(2020-1\right)=2020^{2019}\cdot2019\)
\(2020^{2019}-2020^{2018}=2020^{2018}\cdot2019\)
mà 2019>2018
nên 2020^2020-2020^2019>2020^2019-2020^2018
a, \(\frac{15}{106}\)và \(\frac{21}{133}\)
Ta có:
\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)
\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)
Vậy ........
b, \(\frac{31}{100}\)và \(\frac{89}{150}\)
Ta có:
\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)
\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)
Vậy........
c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
Ta có:
\(\frac{2020}{2019}-1=\frac{1}{2019}\) ;
\(\frac{2021}{2020}-1=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
Vậy .........
d, n+2019/n+2021 và n+2020/n+2022
Câu d bn tự lm nhé
a/
2020.2021=(2019+1)(2022-1)=
=2019.2022-2019+2022-1=2019.2022+2>2019.2022
b/
\(4^7=\left(2^2\right)^7=2^{14}< 2^{15}\)
c/
\(199^{20}< 200^{20}=\left(8.25\right)^{20}=\left(2^3.5^2\right)^{20}=2^{60}.5^{40}\)
\(2000^{15}=\left(16.125\right)^{15}=\left(2^4.5^3\right)^{15}=2^{60}.5^{45}\)
\(\Rightarrow2000^{15}=2^{60}.5^{45}>2^{60}.5^{40}>199^{20}\)
d/
\(31^{31}< 32^{31}=\left(2^5\right)^{31}=2^{155}\)
\(17^{39}>16^{39}=\left(2^4\right)^{39}=2^{156}\)
\(\Rightarrow17^{39}=2^{156}>2^{155}>31^{31}\)
Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)
\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)
\(\Leftrightarrow A>B\)
Giải:
Ta có: N=2019+2020/2020+2021
=>N=2019/2020+2021 + 2020/2020+2021
Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021
=>M>N
Vậy ...
Chúc bạn học tốt!
Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)
\(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)
\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)
\(\Rightarrow M>N\)
Ta thấy: hai phân số đều cho giá trị là âm
Lại thấy: -2020.2004<2019.-2003 nên -2020/2019<-2003/2004
Xét 2 phân số 14/31 và 49/101
Suy ra phải so sánh 14.101 (1) và 31.49(2)
Xét (1)
14.101=14.49+728
Xét (2)
31.49=14.49+833
Do 14.49+728<14.49+833 nên 49/101>14/31