K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(\left\{{}\begin{matrix}4x^2+y^2\left(1-4xy\right)=0\\4x^2+2y^2-4xy-1=0\end{matrix}\right.\)

\(\Rightarrow y^2\left(1-4xy\right)-2y^2+4xy+1=0\)

\(\Leftrightarrow-y^2\left(4xy+1\right)+4xy+1=0\)

\(\Leftrightarrow\left(4xy+1\right)\left(1-y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4xy=-1\\y^2=1\end{matrix}\right.\)

Bạn tự giải nốt

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

NV
29 tháng 7 2021

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

NV
1 tháng 6 2020

Cộng vế với vế:

\(4x^2-4xy^2+y^4+x^2-4x+4=0\)

\(\Leftrightarrow\left(2x-y^2\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y^2=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\end{matrix}\right.\) thay vào pt đầu chỉ có \(\left(x;y\right)=\left(2;2\right)\) thỏa mãn

NV
28 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

\(\Rightarrow-4\left(x^3-y^3\right)=\left(5x^2-y^2\right)\left(16x-4y\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{7x}{4}\\y=-3x\end{matrix}\right.\)

Lần lượt thế vào \(y^2=5x^2+4\)...

b. Đề bài bất hợp lý, \(4x^2+y^4\) cần là \(4x^4+y^4\)

20 tháng 1 2021

Đề thiếu vế trên rồi em ơi.

22 tháng 1 2021

vâng em xin lỗi ạ !

NV
23 tháng 5 2019

ĐKXĐ:...

Biến đổi pt đầu:

\(2y\left(y-2x\right)+2\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)

\(\Leftrightarrow2\left(y+1\right)\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{y-1}=a\\\sqrt{\left(y+1\right)\left(y-2x\right)}=b\end{matrix}\right.\) ta được:

\(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{y-1}=\sqrt{\left(y+1\right)\left(y-2x\right)}\left(1\right)\\\sqrt{y-1}=2\sqrt{\left(y+1\right)\left(y-2x\right)}\left(2\right)\end{matrix}\right.\)

Bình phương 2 vế phương trình dưới:

\(\Leftrightarrow y+1+y-2x+2\sqrt{\left(y+1\right)\left(y-2x\right)}=2y-2x+2\)

\(\Leftrightarrow2\sqrt{\left(y+1\right)\left(y-2x\right)}=1\) (3)

TH1: thế (1) vào (3) ta được:

\(2\sqrt{y-1}=1\Rightarrow y-1=\frac{1}{4}\Rightarrow y=\frac{5}{4}\Rightarrow x=\frac{41}{72}\)

TH2: thế (2) vào (3) ta được:

\(\sqrt{y-1}=1\Rightarrow y=2\Rightarrow x=\frac{23}{24}\)

25 tháng 5 2019

Em cảm ơn ạ !!