tìm giá trị xđể M nguyên
M = \(\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân thức M xác định khi và chỉ khi :
+) \(2x-2\ne0\Leftrightarrow x\ne1\)
+) \(2x+2\ne0\Leftrightarrow x\ne-1\)
+) \(1-\frac{x-3}{x+1}\ne0\)
\(\Leftrightarrow x-3\ne x+1\)
\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)
Vậy \(x\ne\left\{1;-1\right\}\)
b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)
\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)
\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)
\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)
\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)
\(M=\frac{1}{x-1}\)
\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)
a) M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2)
= 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)
= 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4
= -22x - 55 = -11(2x + 5)
b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)
b) M = -11(2x + 5) = 0
\(\Rightarrow\)2x + 5 = 0
\(\Rightarrow\)x = \(\frac{-5}{2}\)
Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)
b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)
\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)
c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB
Gọi G là trọng tâm của tam giác ABC, ta có :
\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)
Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC
Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có
\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)
\(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\) (1)
Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\) (2)
\(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)
\(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)
\(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)
\(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\) (3)
Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)
Hơn nữa, bằng kiểm tra trực tiếp ta thấy \(P\ge\sqrt{3}\) khi x=0
Vậy min P=\(\sqrt{3}\)
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
ĐKXĐ : \(x\ne-1;x\ne3\)
M = \(\frac{2x}{\left(x+1\right)\left(x-3\right)}\)\(=\frac{2x}{x^2-3x+x-3}\)\(=\frac{2x}{x^2-2x-3}\)
\(=\frac{2x}{2x\left(\frac{x}{2}-1-\frac{3}{2x}\right)}\)\(=\frac{1}{\frac{x}{2}-1-\frac{3}{2x}}\)\(=\frac{1}{\frac{1}{2}\left(x-\frac{3}{x}\right)-1}\)
Vì M nguyên => \(1⋮\) \(\left[\frac{1}{2}\left(x-\frac{3}{x}\right)-1\right]\)
=> \(\left[\frac{1}{2}\left(x-\frac{3}{x}\right)-1\right]\)\(\in\text{Ư}_{\left(1\right)}=\left\{\pm1\right\}\)
TH1 : \(\frac{1}{2}\left(x-\frac{3}{x}\right)-1=1\)
\(\frac{1}{2}\left(x-\frac{3}{x}\right)=2\)
\(x-\frac{3}{x}=4\)
\(\frac{x^2-3}{x}=4\)
\(x^2-3=4x\)
\(x^2-3-4x=0\)
\(\left(x^2-4x+4\right)-7=0\)
\(\left(x-2\right)^2=7\)
\(x-2=\sqrt{7}\Rightarrow x=\sqrt{7}+2\)( TM )
TH2 : \(\frac{1}{2}\left(x-\frac{3}{x}\right)-1=-1\)
\(\frac{1}{2}\left(x-\frac{3}{x}\right)=0\)
\(x-\frac{3}{x}=0\)
\(x=\frac{3}{x}\)\(\Rightarrow x^2=3\Rightarrow x=\sqrt{3}\)( TM )
Vậy giá trị của x là ... thì M nguyên.
mình đăng chs thôi . CHứ mình làm đc r . Cảm ơn cậu nhiều nha ^^