|2x-27|2011 +(3y+10)2012 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...
Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm
ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0
(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0
=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10
=>x=13,5 hoặc x=-10/3
vậy .............................
Tìm các giá trị của x, y thỏa mãn: |2x-27|2011+(3y+10)2012=0
Giải:Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}}\)\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Kết hợp với giả thiết ta thấy \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\) nên:
\(\hept{\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x=\(\frac{27}{2}\);y=\(-\frac{10}{3}\) thỏa mãn bài toán
Sửa lại:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(3y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(3y+10\right)^{2012}=0\)
\(\Rightarrow3y+10=0\)
\(\Rightarrow3y=-10\)
\(\Rightarrow y=\frac{-10}{3}\)
Vậy \(x=13,5;y=\frac{-10}{3}\)
Ta có:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(2y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(2y+10\right)^{2012}=0\)
\(\Rightarrow2y+10=0\)
\(\Rightarrow2y=-10\)
\(\Rightarrow y=-5\)
Vậy \(x=13,5;y=-5\)
Có:
\(\left|2x-27\right|^{2011}\ge0\forall x\)
\(\left(3y+10\right)^{2012}\ge0\forall y\)
\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)
\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Ta có: |2x - 27|2011 \(\ge\)0 ; (3y + 10)2012 \(\ge\)0
Mà |2x - 27|2011 + (3y + 10)2012 = 0
=> |2x - 27|2011 = 0 và (3y + 10)2012 = 0
=> 2x - 27 = 0 và 3y + 10 = 0
=> 2x = 27 và 3y = -10
=> x = 27/2 và y = -10/3.
Vì
|2x - 27|2011 ≥ 0
(3y + 10)2012 ≥ 0
=> |2x - 27|2011 + (3y + 10)2012 ≥ 0
Dấu "=" xảy ra <=> |2x - 27|2011 = 0 và (3y + 10)2012 =0
<=> 2x - 27 = 0 và 3y + 10 = 0
=> x = 27/2 và y = - 10/3
Ta có: \(\left|2x-27\right|^{2011}\ge0;\left(3y+10\right)^{2012}\ge0\)
Mà \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow2x-27=0\text{ và }3y+10=0\)
\(\Rightarrow2x=27\text{ và }3y=-10\)
\(\Rightarrow x=\frac{27}{2}\text{ và }y=-\frac{10}{3}\).