chứng minh định lý sau: 1 đường thẳng song song với 1 trong 2 đường thẳng song song thì 3 đường thẳng đó song song với nhau GT |a//b;b//c -----|--------------------------- KL |a//b//c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
Bài 1:
GT | a\(\perp\)b;b\(\perp\)c |
KL | a//c |
Ta có: a\(\perp\)b
b\(\perp\)c
Do đó: a//c(Định lí 1 từ vuông góc tới song song)
Bài 2:
GT | a\(\perp\)b;b//c |
KL | a\(\perp\)c |
Ta có: b//c
a\(\perp\)b
Do đó: a\(\perp\)c
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
GT: a//b; c\(\perp\)a
KL: c\(\perp\)b
Theo đề, ta có: A là góc vuông (hay \(\widehat{A}\)= 900)
Ta có: \(\widehat{A}\)= \(\widehat{B}\)= 900 (a//b, đồng vị)
Hay B là góc vuông
=> c\(\perp\)b (định nghĩa 2 đường thẳng vuông góc)
Cho a // b , a // c . Chứng minh : b // c
Giải
Vẽ đường thẳng d // a
Do a //b và a vuông góc với d
-> b //d (1)
Do a //c và a vuông góc với d
-> c//d (2)
Từ (1) và (2) => b// c
=> đpcm