Cho x,y là các số dương. CMR: x7+y7>=x3.y3.(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)
\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)
\(\Leftrightarrow x+y=10\)
Do:
\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)
\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)
\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)
https://hoc24.vn/cau-hoi/tim-xyin-z-biet-a2x2-xy-7x-2y-y2-70bx2-2y2-3xy-3x-5y-140ps-huong-dan-em-lam-chi-tiet-dang-nay-nua-voi-a.330915967066
Giúp e dạng này với anh . Cho e spam xíu :(
Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.
Giả thiết tương đương với:
\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).
Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).
Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.
Vậy max p = 5 khi x = y = 2.
Ta có :\(x^7+y^7\ge x^3y^3\left(x+y\right)\)
\(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^3-y^3\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-y^2\right)\left(x^2+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)\ge0\) ( Luôn đúng với x,y dương )
Do đó : \(x^7+y^7\ge x^3y^3\left(x+y\right)\)