K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

\(\frac{a}{c+b}>\frac{a}{a+b+c},\frac{b}{a+c}>\frac{b}{a+b+c},\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)

Lại có : \(\frac{a}{c+b}< \frac{2a}{a+b+c},\frac{b}{a+c}< \frac{2b}{a+b+c},\frac{c}{a+b}< \frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)

=> đpcm

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(\frac{b}{b+c}>\frac{b}{b+c+a}\)và \(\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 1\)

Vì \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(c>0\right)\)

Chứng minh tương tự \(\frac{b}{b+c}< \frac{b+a}{b+c+a}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

20 tháng 6 2017

Kẹp 1<S<2 ^^ 

5 tháng 9 2016

 2.

Vì 0<a<b<c nên tổng 2 số nhỏ nhất trong tập hợp A là 
(abc)+(acb)=(100a+10b+c)+(100a+10c+b) 
=200a+11b+11c=200a+11(b+c). 
Vậy 200a+11(b+c)=488 (*) 
Từ (*) =>a<3 =>a chỉ có thể là 1 hoặc 2 
+Nếu a=1 =>11(b+c)=288 => vô nghiệm vì b+c=288/11 không nguyên 
+Nếu a=2 =>11(b+c)=88 =>b=3; c=5 (vì a<b<c) 
=>a+b+c=2+3+5 = 10.

5 tháng 9 2016

Bạn có chắc chắn đúng ko ???

 

7 tháng 4 2019

Các bạn ơi câu b là bé hơn 2 nhé