Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình: \(\hept{\begin{cases}x^2+xy+xz=48\\xy+y^2+yz=12\\xz+yz+z^2=84\end{cases}}\)
Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)
\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)
\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)
\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)
Với x+y+z=0
\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)
=> x=4y
Đến đây đơn giản rồi nhé
Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)
\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)
\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)
\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)
Với x+y+z=0
\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)
=> x=4y
Đến đây đơn giản rồi nhé