K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

Ta có : \(S=\frac{4}{50}+\frac{4}{51}+...+\frac{4}{99}=4\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}\right)\)(50 số hạng trong ngoặc)

\(>4\left(\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}\right)=4.\frac{50}{99}=\frac{200}{99}>\frac{200}{100}=2\)

=> S > 2(1)

Lại có  \(S=\frac{4}{50}+\frac{4}{51}+...+\frac{4}{99}=4\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{100}\right)< 4\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)(50 số hạng)

\(=4.\frac{50}{50}=4\)

=> S < 4(2)

Từ (1) và (2) => 2 < S < 4 (đpcm)

5 tháng 1 2022

a, S = 2 + 22 + 23 + 24 + ... + 299 + 2100. 2S = 22 + 23 + 24 + 25 + ... + 2100 + 2101 => 2S - S = S = (22 + 23 + 24 + 25 + ... + 2100 + 2101) - (2 + 22 + 23 + 24 + ... + 299 + 2100) = 2101 - 2. Vậy S = 2101 - 2. b, S = 2 + 22 + 23 + 24 + ... + 299 + 2100 = (2 + 22) + (23 + 24) + ... + (299 + 2100) = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2) = (1 + 2).(2 + 23 + ... + 299) = 3.(2 + 23 + ... + 299) => S ⋮ 3. Vậy S ⋮ 3 (đpcm)

29 tháng 9 2015

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

24 tháng 7 2015

ở phần câu hỏi tương tự có câu giống hết thế này được trả lời rôi bạn vào đó mà xem

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396(1-3+32-33)

=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

b) 3S=3-32+33-34+..+399-3100

3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)

4S=1-3100

S=(1-3100):4

Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1

3 tháng 4 2017

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{43\cdot46}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}< 1\)

\(\left(\frac{3}{a\cdot\left(a+3\right)}=\frac{a+3-3}{a\cdot\left(a+3\right)}=\frac{1}{a}-\frac{1}{a+3}\right)\)

3 tháng 4 2017

\(S=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{43\times46}\)

\(3S=3-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...+\frac{3}{43}-\frac{3}{46}\)

\(3S=3-\frac{3}{46}\)

\(3S=\frac{135}{46}\)

\(S=\frac{45}{46}< 1\)

Vậy ra có điều phải chứng minh

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

 = -20+..+396(1-3+32-33)=-20+..+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20