giải pt nghiệm nguyên \(x^2+y^2=2007\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)
\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)
TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\)
TH2: \(xy-3x-3y+1=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)
Từ đó ta có bảng:
\(x-3\) | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
\(y-3\) | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
\(x\) | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
\(y\) | 11 | 4 | 7 | 5 | -5 | 2 | -1 | 1 |
Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)
Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:
\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\); \(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)
- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm
- Với \(x=0\) ko thỏa mãn
- Với \(x=1\Rightarrow y=\pm3\)
- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)
\(\Rightarrow2^x+7=\left(2k+1\right)^2\)
\(\Rightarrow2^x+6=4k\left(k+1\right)\)
\(\Rightarrow4k\left(k+1\right)-2^x=6\)
Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)
\(\Rightarrow\) Ko tồn tại x;k thỏa mãn
Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)
\(4x^2=4y^6-4y^3\)
\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...
1 số chính phương chia 4 dư 0 hoặc 1
Mà vế trái chia 4 có số dư lớn nhất là 2
Vế phải chia 4 dư 3
Suy ra phương trình vô nghiệm